Примечание.
Для доступа к этой странице требуется авторизация. Вы можете попробовать войти или изменить каталоги.
Для доступа к этой странице требуется авторизация. Вы можете попробовать изменить каталоги.
В этой статье вы узнаете, как использовать голосовую трансляцию с генерируемым искусственным интеллектом и речью Azure в средствах Foundry на портале Microsoft Foundry.
Вы создаете и запускаете приложение для использования голосовой трансляции непосредственно с генерируемыми моделями ИИ для агентов голосовой связи в режиме реального времени.
Использование моделей позволяет напрямую указывать пользовательские инструкции (запросы) для каждого сеанса, обеспечивая большую гибкость для динамических или экспериментальных вариантов использования.
Модели могут быть предпочтительнее, если требуется точное управление параметрами сеанса или часто настраивать запрос или конфигурацию без обновления агента на портале.
Код для сеансов на основе модели проще в некоторых отношениях, так как он не требует управления идентификаторами агентов или настройкой для конкретного агента.
Прямое использование модели подходит для сценариев, когда абстракции уровня агента или встроенная логика не требуется.
Чтобы вместо этого использовать Voice live API с агентами, ознакомьтесь с кратким руководством по Voice live API для агентов.
Предпосылки
- Подписка Azure. Создайте его бесплатно.
- Ресурс Microsoft Foundry, созданный в одном из поддерживаемых регионов. Дополнительные сведения о доступности регионов см. в документации по голосовой трансляции.
Подсказка
Чтобы использовать голосовую трансляцию, вам не нужно развертывать звуковую модель с ресурсом Microsoft Foundry. Голосовая трансляция полностью управляется, и модель автоматически развертывается для вас. Дополнительные сведения о доступности моделей см. в документации по голосовой трансляции.
Пробная трансляция голоса на игровой площадке "Речь"
Чтобы попробовать демонстрацию голосовой трансляции, выполните следующие действия.
- Перейдите в Microsoft Foundry.
- Выберите "Сборка" в правом верхнем меню.
- Выберите модели на левой панели.
- Во вкладке «Службы ИИ» отображаются модели ИИ Azure, которые можно использовать без дополнительных настроек на портале Foundry. Выберите Azure Speech - Voice Live, чтобы открыть платформу Voice Live.
- Выберите сценарий и голос с помощью раскрывающихся меню. При необходимости настройте другие параметры поведения агента голосовой связи. Переключатель упреждающего взаимодействия , например, позволяет агенту сначала говорить в беседе.
- Когда вы будете готовы, нажмите кнопку "Пуск" , чтобы начать беседу с агентом голосовой связи с помощью микрофона и динамиков устройства.
- Выберите "Конец " для завершения сеанса чата.
В этой статье вы узнаете, как использовать голосовую трансляцию службы "Речь Azure" в средстве Foundry с моделями Microsoft Foundry с помощью пакета SDK voiceLive для Python.
Справочные примеры пакета документации | (PyPi) | Дополнительные примеры на GitHub
Вы создаете и запускаете приложение для использования голосовой трансляции непосредственно с генерируемыми моделями ИИ для агентов голосовой связи в режиме реального времени.
Использование моделей позволяет напрямую указывать пользовательские инструкции (запросы) для каждого сеанса, обеспечивая большую гибкость для динамических или экспериментальных вариантов использования.
Модели могут быть предпочтительнее, если требуется точное управление параметрами сеанса или часто настраивать запрос или конфигурацию без обновления агента на портале.
Код для сеансов на основе модели проще в некоторых отношениях, так как он не требует управления идентификаторами агентов или настройкой для конкретного агента.
Прямое использование модели подходит для сценариев, когда абстракции уровня агента или встроенная логика не требуется.
Чтобы вместо этого использовать Voice live API с агентами, ознакомьтесь с кратким руководством по Voice live API для агентов.
Предпосылки
- Подписка Azure. Создайте его бесплатно.
- Python 3.10 или более поздней версии. Если у вас нет подходящей версии Python, вы можете следовать инструкциям в руководстве по Python VS Code для простого способа установки Python в операционной системе.
- Ресурс Microsoft Foundry, созданный в одном из поддерживаемых регионов. Дополнительные сведения о доступности регионов см. в разделе "Поддержка регионов".
Подсказка
Чтобы использовать голосовую трансляцию, вам не нужно развертывать звуковую модель с ресурсом Microsoft Foundry. Голосовая трансляция полностью управляется, и модель автоматически развертывается для вас. Дополнительные сведения о доступности моделей см. в документации по голосовой трансляции.
Предварительные требования для идентификатора Microsoft Entra
Для рекомендуемой проверки подлинности без ключа с помощью идентификатора Microsoft Entra необходимо:
- Установите Azure CLI, используемый для проверки подлинности без ключа с помощью идентификатора Microsoft Entra.
- Назначьте роль
Cognitive Services Userсвоему аккаунту пользователя. Роли можно назначить в портале Azure в разделе Контроль доступа (IAM)>Добавить назначение ролей.
Настройка
Создайте новую папку
voice-live-quickstartи перейдите в папку быстрого запуска, используя следующую команду:mkdir voice-live-quickstart && cd voice-live-quickstartСоздайте виртуальную среду. Если у вас уже установлен Python 3.10 или более поздней версии, можно создать виртуальную среду с помощью следующих команд:
Активация среды Python означает, что при запуске
pythonилиpipиз командной строки используется интерпретатор Python, содержащийся в.venvпапке приложения. Вы можете использоватьdeactivateкоманду для выхода из виртуальной среды Python, а затем повторно активировать ее при необходимости.Подсказка
Рекомендуется создать и активировать новую среду Python для установки пакетов, необходимых для этого руководства. Не устанавливайте пакеты в глобальную установку Python. При установке пакетов Python всегда следует использовать виртуальную или конда-среду, в противном случае можно разорвать глобальную установку Python.
Создайте файл с именемrequirements.txt. Добавьте в файл следующие пакеты:
azure-ai-voicelive[aiohttp] pyaudio python-dotenv azure-identityУстановите пакеты:
pip install -r requirements.txt
Получение сведений о ресурсе
Создайте файл с именем .env в папке, в которой требуется запустить код.
.env В файле добавьте следующие переменные среды для проверки подлинности:
AZURE_VOICELIVE_ENDPOINT=<your_endpoint>
AZURE_VOICELIVE_MODEL=<your_model>
AZURE_VOICELIVE_API_VERSION=2025-10-01
AZURE_VOICELIVE_API_KEY=<your_api_key> # Only required if using API key authentication
Замените значения по умолчанию фактическими конечными точками, моделью, версией API и ключом API.
| Имя переменной | Ценность |
|---|---|
AZURE_VOICELIVE_ENDPOINT |
Это значение можно найти в разделе "Ключи и конечная точка доступа" при просмотре ресурса на портале Azure. |
AZURE_VOICELIVE_MODEL |
Модель, которую вы хотите использовать. Например, gpt-4o или gpt-realtime-mini. Дополнительные сведения о доступности моделей см. в обзорной документации по API голосовой трансляции. |
AZURE_VOICELIVE_API_VERSION |
Версия API, которую вы хотите использовать. Например: 2025-10-01. |
Дополнительные сведения о бессерверной проверке подлинности и настройке переменных среды.
Начните разговор
Пример кода в этом кратком руководстве использует идентификатор Microsoft Entra или ключ API для проверки подлинности. Аргумент скрипта можно задать как ключ API, так и маркер доступа.
voice-live-quickstart.pyСоздайте файл со следующим кодом:# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # ------------------------------------------------------------------------- from __future__ import annotations import os import sys import argparse import asyncio import base64 from datetime import datetime import logging import queue import signal from typing import Union, Optional, TYPE_CHECKING, cast from azure.core.credentials import AzureKeyCredential from azure.core.credentials_async import AsyncTokenCredential from azure.identity.aio import AzureCliCredential, DefaultAzureCredential from azure.ai.voicelive.aio import connect from azure.ai.voicelive.models import ( AudioEchoCancellation, AudioNoiseReduction, AzureStandardVoice, InputAudioFormat, Modality, OutputAudioFormat, RequestSession, ServerEventType, ServerVad ) from dotenv import load_dotenv import pyaudio if TYPE_CHECKING: # Only needed for type checking; avoids runtime import issues from azure.ai.voicelive.aio import VoiceLiveConnection ## Change to the directory where this script is located os.chdir(os.path.dirname(os.path.abspath(__file__))) # Environment variable loading load_dotenv('./.env', override=True) # Set up logging ## Add folder for logging if not os.path.exists('logs'): os.makedirs('logs') ## Add timestamp for logfiles timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ## Set up logging logging.basicConfig( filename=f'logs/{timestamp}_voicelive.log', filemode="w", format='%(asctime)s:%(name)s:%(levelname)s:%(message)s', level=logging.INFO ) logger = logging.getLogger(__name__) class AudioProcessor: """ Handles real-time audio capture and playback for the voice assistant. Threading Architecture: - Main thread: Event loop and UI - Capture thread: PyAudio input stream reading - Send thread: Async audio data transmission to VoiceLive - Playback thread: PyAudio output stream writing """ loop: asyncio.AbstractEventLoop class AudioPlaybackPacket: """Represents a packet that can be sent to the audio playback queue.""" def __init__(self, seq_num: int, data: Optional[bytes]): self.seq_num = seq_num self.data = data def __init__(self, connection): self.connection = connection self.audio = pyaudio.PyAudio() # Audio configuration - PCM16, 24kHz, mono as specified self.format = pyaudio.paInt16 self.channels = 1 self.rate = 24000 self.chunk_size = 1200 # 50ms # Capture and playback state self.input_stream = None self.playback_queue: queue.Queue[AudioProcessor.AudioPlaybackPacket] = queue.Queue() self.playback_base = 0 self.next_seq_num = 0 self.output_stream: Optional[pyaudio.Stream] = None logger.info("AudioProcessor initialized with 24kHz PCM16 mono audio") def start_capture(self): """Start capturing audio from microphone.""" def _capture_callback( in_data, # data _frame_count, # number of frames _time_info, # dictionary _status_flags): """Audio capture thread - runs in background.""" audio_base64 = base64.b64encode(in_data).decode("utf-8") asyncio.run_coroutine_threadsafe( self.connection.input_audio_buffer.append(audio=audio_base64), self.loop ) return (None, pyaudio.paContinue) if self.input_stream: return # Store the current event loop for use in threads self.loop = asyncio.get_event_loop() try: self.input_stream = self.audio.open( format=self.format, channels=self.channels, rate=self.rate, input=True, frames_per_buffer=self.chunk_size, stream_callback=_capture_callback, ) logger.info("Started audio capture") except Exception: logger.exception("Failed to start audio capture") raise def start_playback(self): """Initialize audio playback system.""" if self.output_stream: return remaining = bytes() def _playback_callback( _in_data, frame_count, # number of frames _time_info, _status_flags): nonlocal remaining frame_count *= pyaudio.get_sample_size(pyaudio.paInt16) out = remaining[:frame_count] remaining = remaining[frame_count:] while len(out) < frame_count: try: packet = self.playback_queue.get_nowait() except queue.Empty: out = out + bytes(frame_count - len(out)) continue except Exception: logger.exception("Error in audio playback") raise if not packet or not packet.data: # None packet indicates end of stream logger.info("End of playback queue.") break if packet.seq_num < self.playback_base: # skip requested # ignore skipped packet and clear remaining if len(remaining) > 0: remaining = bytes() continue num_to_take = frame_count - len(out) out = out + packet.data[:num_to_take] remaining = packet.data[num_to_take:] if len(out) >= frame_count: return (out, pyaudio.paContinue) else: return (out, pyaudio.paComplete) try: self.output_stream = self.audio.open( format=self.format, channels=self.channels, rate=self.rate, output=True, frames_per_buffer=self.chunk_size, stream_callback=_playback_callback ) logger.info("Audio playback system ready") except Exception: logger.exception("Failed to initialize audio playback") raise def _get_and_increase_seq_num(self): seq = self.next_seq_num self.next_seq_num += 1 return seq def queue_audio(self, audio_data: Optional[bytes]) -> None: """Queue audio data for playback.""" self.playback_queue.put( AudioProcessor.AudioPlaybackPacket( seq_num=self._get_and_increase_seq_num(), data=audio_data)) def skip_pending_audio(self): """Skip current audio in playback queue.""" self.playback_base = self._get_and_increase_seq_num() def shutdown(self): """Clean up audio resources.""" if self.input_stream: self.input_stream.stop_stream() self.input_stream.close() self.input_stream = None logger.info("Stopped audio capture") # Inform thread to complete if self.output_stream: self.skip_pending_audio() self.queue_audio(None) self.output_stream.stop_stream() self.output_stream.close() self.output_stream = None logger.info("Stopped audio playback") if self.audio: self.audio.terminate() logger.info("Audio processor cleaned up") class BasicVoiceAssistant: """Basic voice assistant implementing the VoiceLive SDK patterns.""" def __init__( self, endpoint: str, credential: Union[AzureKeyCredential, AsyncTokenCredential], model: str, voice: str, instructions: str, ): self.endpoint = endpoint self.credential = credential self.model = model self.voice = voice self.instructions = instructions self.connection: Optional["VoiceLiveConnection"] = None self.audio_processor: Optional[AudioProcessor] = None self.session_ready = False self._active_response = False self._response_api_done = False async def start(self): """Start the voice assistant session.""" try: logger.info("Connecting to VoiceLive API with model %s", self.model) # Connect to VoiceLive WebSocket API async with connect( endpoint=self.endpoint, credential=self.credential, model=self.model, ) as connection: conn = connection self.connection = conn # Initialize audio processor ap = AudioProcessor(conn) self.audio_processor = ap # Configure session for voice conversation await self._setup_session() # Start audio systems ap.start_playback() logger.info("Voice assistant ready! Start speaking...") print("\n" + "=" * 60) print("🎤 VOICE ASSISTANT READY") print("Start speaking to begin conversation") print("Press Ctrl+C to exit") print("=" * 60 + "\n") # Process events await self._process_events() finally: if self.audio_processor: self.audio_processor.shutdown() async def _setup_session(self): """Configure the VoiceLive session for audio conversation.""" logger.info("Setting up voice conversation session...") # Create voice configuration voice_config: Union[AzureStandardVoice, str] if self.voice.startswith("en-US-") or self.voice.startswith("en-CA-") or "-" in self.voice: # Azure voice voice_config = AzureStandardVoice(name=self.voice) else: # OpenAI voice (alloy, echo, fable, onyx, nova, shimmer) voice_config = self.voice # Create turn detection configuration turn_detection_config = ServerVad( threshold=0.5, prefix_padding_ms=300, silence_duration_ms=500) # Create session configuration session_config = RequestSession( modalities=[Modality.TEXT, Modality.AUDIO], instructions=self.instructions, voice=voice_config, input_audio_format=InputAudioFormat.PCM16, output_audio_format=OutputAudioFormat.PCM16, turn_detection=turn_detection_config, input_audio_echo_cancellation=AudioEchoCancellation(), input_audio_noise_reduction=AudioNoiseReduction(type="azure_deep_noise_suppression"), ) conn = self.connection assert conn is not None, "Connection must be established before setting up session" await conn.session.update(session=session_config) logger.info("Session configuration sent") async def _process_events(self): """Process events from the VoiceLive connection.""" try: conn = self.connection assert conn is not None, "Connection must be established before processing events" async for event in conn: await self._handle_event(event) except Exception: logger.exception("Error processing events") raise async def _handle_event(self, event): """Handle different types of events from VoiceLive.""" logger.debug("Received event: %s", event.type) ap = self.audio_processor conn = self.connection assert ap is not None, "AudioProcessor must be initialized" assert conn is not None, "Connection must be established" if event.type == ServerEventType.SESSION_UPDATED: logger.info("Session ready: %s", event.session.id) self.session_ready = True # Start audio capture once session is ready ap.start_capture() elif event.type == ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STARTED: logger.info("User started speaking - stopping playback") print("🎤 Listening...") ap.skip_pending_audio() # Only cancel if response is active and not already done if self._active_response and not self._response_api_done: try: await conn.response.cancel() logger.debug("Cancelled in-progress response due to barge-in") except Exception as e: if "no active response" in str(e).lower(): logger.debug("Cancel ignored - response already completed") else: logger.warning("Cancel failed: %s", e) elif event.type == ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STOPPED: logger.info("🎤 User stopped speaking") print("🤔 Processing...") elif event.type == ServerEventType.RESPONSE_CREATED: logger.info("🤖 Assistant response created") self._active_response = True self._response_api_done = False elif event.type == ServerEventType.RESPONSE_AUDIO_DELTA: logger.debug("Received audio delta") ap.queue_audio(event.delta) elif event.type == ServerEventType.RESPONSE_AUDIO_DONE: logger.info("🤖 Assistant finished speaking") print("🎤 Ready for next input...") elif event.type == ServerEventType.RESPONSE_DONE: logger.info("✅ Response complete") self._active_response = False self._response_api_done = True elif event.type == ServerEventType.ERROR: msg = event.error.message if "Cancellation failed: no active response" in msg: logger.debug("Benign cancellation error: %s", msg) else: logger.error("❌ VoiceLive error: %s", msg) print(f"Error: {msg}") elif event.type == ServerEventType.CONVERSATION_ITEM_CREATED: logger.debug("Conversation item created: %s", event.item.id) else: logger.debug("Unhandled event type: %s", event.type) def parse_arguments(): """Parse command line arguments.""" parser = argparse.ArgumentParser( description="Basic Voice Assistant using Azure VoiceLive SDK", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--api-key", help="Azure VoiceLive API key. If not provided, will use AZURE_VOICELIVE_API_KEY environment variable.", type=str, default=os.environ.get("AZURE_VOICELIVE_API_KEY"), ) parser.add_argument( "--endpoint", help="Azure VoiceLive endpoint", type=str, default=os.environ.get("AZURE_VOICELIVE_ENDPOINT", "https://your-resource-name.services.ai.azure.com/"), ) parser.add_argument( "--model", help="VoiceLive model to use", type=str, default=os.environ.get("AZURE_VOICELIVE_MODEL", "gpt-realtime"), ) parser.add_argument( "--voice", help="Voice to use for the assistant. E.g. alloy, echo, fable, en-US-AvaNeural, en-US-GuyNeural", type=str, default=os.environ.get("AZURE_VOICELIVE_VOICE", "en-US-Ava:DragonHDLatestNeural"), ) parser.add_argument( "--instructions", help="System instructions for the AI assistant", type=str, default=os.environ.get( "AZURE_VOICELIVE_INSTRUCTIONS", "You are a helpful AI assistant. Respond naturally and conversationally. " "Keep your responses concise but engaging.", ), ) parser.add_argument( "--use-token-credential", help="Use Azure token credential instead of API key", action="store_true", default=False ) parser.add_argument("--verbose", help="Enable verbose logging", action="store_true") return parser.parse_args() def main(): """Main function.""" args = parse_arguments() # Set logging level if args.verbose: logging.getLogger().setLevel(logging.DEBUG) # Validate credentials if not args.api_key and not args.use_token_credential: print("❌ Error: No authentication provided") print("Please provide an API key using --api-key or set AZURE_VOICELIVE_API_KEY environment variable,") print("or use --use-token-credential for Azure authentication.") sys.exit(1) # Create client with appropriate credential credential: Union[AzureKeyCredential, AsyncTokenCredential] if args.use_token_credential: credential = AzureCliCredential() # or DefaultAzureCredential() if needed logger.info("Using Azure token credential") else: credential = AzureKeyCredential(args.api_key) logger.info("Using API key credential") # Create and start voice assistant assistant = BasicVoiceAssistant( endpoint=args.endpoint, credential=credential, model=args.model, voice=args.voice, instructions=args.instructions, ) # Setup signal handlers for graceful shutdown def signal_handler(_sig, _frame): logger.info("Received shutdown signal") raise KeyboardInterrupt() signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) # Start the assistant try: asyncio.run(assistant.start()) except KeyboardInterrupt: print("\n👋 Voice assistant shut down. Goodbye!") except Exception as e: print("Fatal Error: ", e) if __name__ == "__main__": # Check audio system try: p = pyaudio.PyAudio() # Check for input devices input_devices = [ i for i in range(p.get_device_count()) if cast(Union[int, float], p.get_device_info_by_index(i).get("maxInputChannels", 0) or 0) > 0 ] # Check for output devices output_devices = [ i for i in range(p.get_device_count()) if cast(Union[int, float], p.get_device_info_by_index(i).get("maxOutputChannels", 0) or 0) > 0 ] p.terminate() if not input_devices: print("❌ No audio input devices found. Please check your microphone.") sys.exit(1) if not output_devices: print("❌ No audio output devices found. Please check your speakers.") sys.exit(1) except Exception as e: print(f"❌ Audio system check failed: {e}") sys.exit(1) print("🎙️ Basic Voice Assistant with Azure VoiceLive SDK") print("=" * 50) # Run the assistant main()Войдите в Azure с помощью следующей команды:
az loginЗапустите файл Python.
python voice-live-quickstart.py --use-token-credentialAPI голосовой трансляции начинает возвращать звук с первоначальным ответом модели. Вы можете прервать модель, выступая. Введите ctrl+C, чтобы выйти из беседы.
Выходные данные
Выходные данные скрипта печатаются в консоли. Отображаются сообщения, указывающие состояние системы. Звук воспроизводится обратно через динамики или наушники.
============================================================
🎤 VOICE ASSISTANT READY
Start speaking to begin conversation
Press Ctrl+C to exit
============================================================
🎤 Listening...
🤔 Processing...
🎤 Ready for next input...
🎤 Listening...
🤔 Processing...
🎤 Ready for next input...
🎤 Listening...
🤔 Processing...
🎤 Ready for next input...
🎤 Listening...
🤔 Processing...
🎤 Listening...
🎤 Ready for next input...
🤔 Processing...
🎤 Ready for next input...
Сценарий, который вы выполнили, создает файл журнала с именем <timestamp>_voicelive.log в папке logs .
По умолчанию для loglevel установлено INFO, но его можно изменить, запустив quickstart с параметром командной строки --verbose или изменив конфигурацию ведения журнала в коде следующим образом:
logging.basicConfig(
filename=f'logs/{timestamp}_voicelive.log',
filemode="w",
format='%(asctime)s:%(name)s:%(levelname)s:%(message)s',
level=logging.INFO
)
Файл журнала содержит сведения о подключении к API голосовой трансляции, включая данные запроса и ответа. Вы можете просмотреть файл журнала, чтобы просмотреть сведения о беседе.
2025-10-02 14:47:37,901:__main__:INFO:Using Azure token credential
2025-10-02 14:47:37,901:__main__:INFO:Connecting to VoiceLive API with model gpt-realtime
2025-10-02 14:47:37,901:azure.core.pipeline.policies.http_logging_policy:INFO:Request URL: 'https://login.microsoftonline.com/organizations/v2.0/.well-known/openid-configuration'
Request method: 'GET'
Request headers:
'User-Agent': 'azsdk-python-identity/1.22.0 Python/3.11.9 (Windows-10-10.0.26200-SP0)'
No body was attached to the request
2025-10-02 14:47:38,057:azure.core.pipeline.policies.http_logging_policy:INFO:Response status: 200
Response headers:
'Date': 'Thu, 02 Oct 2025 21:47:37 GMT'
'Content-Type': 'application/json; charset=utf-8'
'Content-Length': '1641'
'Connection': 'keep-alive'
'Cache-Control': 'max-age=86400, private'
'Strict-Transport-Security': 'REDACTED'
'X-Content-Type-Options': 'REDACTED'
'Access-Control-Allow-Origin': 'REDACTED'
'Access-Control-Allow-Methods': 'REDACTED'
'P3P': 'REDACTED'
'x-ms-request-id': 'f81adfa1-8aa3-4ab6-a7b8-908f411e0d00'
'x-ms-ests-server': 'REDACTED'
'x-ms-srs': 'REDACTED'
'Content-Security-Policy-Report-Only': 'REDACTED'
'Cross-Origin-Opener-Policy-Report-Only': 'REDACTED'
'Reporting-Endpoints': 'REDACTED'
'X-XSS-Protection': 'REDACTED'
'Set-Cookie': 'REDACTED'
'X-Cache': 'REDACTED'
2025-10-02 14:47:42,105:azure.core.pipeline.policies.http_logging_policy:INFO:Request URL: 'https://login.microsoftonline.com/organizations/oauth2/v2.0/token'
Request method: 'POST'
Request headers:
'Accept': 'application/json'
'x-client-sku': 'REDACTED'
'x-client-ver': 'REDACTED'
'x-client-os': 'REDACTED'
'x-ms-lib-capability': 'REDACTED'
'client-request-id': 'REDACTED'
'x-client-current-telemetry': 'REDACTED'
'x-client-last-telemetry': 'REDACTED'
'X-AnchorMailbox': 'REDACTED'
'User-Agent': 'azsdk-python-identity/1.22.0 Python/3.11.9 (Windows-10-10.0.26200-SP0)'
A body is sent with the request
2025-10-02 14:47:42,466:azure.core.pipeline.policies.http_logging_policy:INFO:Response status: 200
Response headers:
'Date': 'Thu, 02 Oct 2025 21:47:42 GMT'
'Content-Type': 'application/json; charset=utf-8'
'Content-Length': '6587'
'Connection': 'keep-alive'
'Cache-Control': 'no-store, no-cache'
'Pragma': 'no-cache'
'Expires': '-1'
'Strict-Transport-Security': 'REDACTED'
'X-Content-Type-Options': 'REDACTED'
'P3P': 'REDACTED'
'client-request-id': 'REDACTED'
'x-ms-request-id': '2e82e728-22c0-4568-b3ed-f00ec79a2500'
'x-ms-ests-server': 'REDACTED'
'x-ms-clitelem': 'REDACTED'
'x-ms-srs': 'REDACTED'
'Content-Security-Policy-Report-Only': 'REDACTED'
'Cross-Origin-Opener-Policy-Report-Only': 'REDACTED'
'Reporting-Endpoints': 'REDACTED'
'X-XSS-Protection': 'REDACTED'
'Set-Cookie': 'REDACTED'
'X-Cache': 'REDACTED'
2025-10-02 14:47:42,467:azure.identity._internal.interactive:INFO:InteractiveBrowserCredential.get_token succeeded
2025-10-02 14:47:42,884:__main__:INFO:AudioProcessor initialized with 24kHz PCM16 mono audio
2025-10-02 14:47:42,884:__main__:INFO:Setting up voice conversation session...
2025-10-02 14:47:42,887:__main__:INFO:Session configuration sent
2025-10-02 14:47:42,943:__main__:INFO:Audio playback system ready
2025-10-02 14:47:42,943:__main__:INFO:Voice assistant ready! Start speaking...
2025-10-02 14:47:42,975:__main__:INFO:Session ready: sess_CMLRGjWnakODcHn583fXf
2025-10-02 14:47:42,994:__main__:INFO:Started audio capture
2025-10-02 14:47:47,513:__main__:INFO:\U0001f3a4 User started speaking - stopping playback
2025-10-02 14:47:47,593:__main__:INFO:Stopped audio playback
2025-10-02 14:47:51,757:__main__:INFO:\U0001f3a4 User stopped speaking
2025-10-02 14:47:51,813:__main__:INFO:Audio playback system ready
2025-10-02 14:47:51,816:__main__:INFO:\U0001f916 Assistant response created
2025-10-02 14:47:58,009:__main__:INFO:\U0001f916 Assistant finished speaking
2025-10-02 14:47:58,009:__main__:INFO:\u2705 Response complete
2025-10-02 14:48:07,309:__main__:INFO:Received shutdown signal
В этой статье вы узнаете, как использовать Azure Speech в инструментах Foundry с моделями Microsoft Foundry в режиме реального времени с помощью VoiceLive SDK для C#.
Справочная документация | Пакет (NuGet) | Дополнительные примеры на GitHub
Вы создаете и запускаете приложение для использования голосовой трансляции непосредственно с генерируемыми моделями ИИ для агентов голосовой связи в режиме реального времени.
Использование моделей позволяет напрямую указывать пользовательские инструкции (запросы) для каждого сеанса, обеспечивая большую гибкость для динамических или экспериментальных вариантов использования.
Модели могут быть предпочтительнее, если требуется точное управление параметрами сеанса или часто настраивать запрос или конфигурацию без обновления агента на портале.
Код для сеансов на основе модели проще в некоторых отношениях, так как он не требует управления идентификаторами агентов или настройкой для конкретного агента.
Прямое использование модели подходит для сценариев, когда абстракции уровня агента или встроенная логика не требуется.
Чтобы вместо этого использовать Voice live API с агентами, ознакомьтесь с кратким руководством по Voice live API для агентов.
Предпосылки
- Подписка Azure. Создайте его бесплатно.
- Ресурс Microsoft Foundry, созданный в одном из поддерживаемых регионов. Дополнительные сведения о доступности регионов см. в документации по голосовой трансляции.
- Установлен SDK для .NET версии 6.0 или более поздней.
Запуск голосовой беседы
Выполните следующие действия, чтобы создать консольное приложение и установить пакет Speech SDK.
Откройте окно командной строки в папке, в которой требуется создать проект. Выполните эту команду, чтобы создать консольное приложение с помощью .NET CLI.
dotnet new consoleЭта команда создает файл Program.cs в каталоге проекта.
Установите Voice Live SDK, Azure Identity и NAudio в своем новом проекте с использованием .NET CLI.
dotnet add package Azure.AI.VoiceLive dotnet add package Azure.Identity dotnet add package NAudio dotnet add package System.CommandLine --version 2.0.0-beta4.22272.1 dotnet add package Microsoft.Extensions.Configuration.Json dotnet add package Microsoft.Extensions.Configuration.EnvironmentVariables dotnet add package Microsoft.Extensions.Logging.ConsoleСоздайте файл с именем
appsettings.jsonв папке, в которой требуется запустить код. В этом файле добавьте следующее содержимое JSON:{ "VoiceLive": { "ApiKey": "your-api-key-here", "Endpoint": "https://your-resource-name.services.ai.azure.com/", "Model": "gpt-realtime", "Voice": "en-US-Ava:DragonHDLatestNeural", "Instructions": "You are a helpful AI assistant. Respond naturally and conversationally. Keep your responses concise but engaging." }, "Logging": { "LogLevel": { "Default": "Information", "Azure.AI.VoiceLive": "Debug" } } }Пример кода в этом кратком руководстве использует идентификатор Microsoft Entra или ключ API для проверки подлинности. Аргумент скрипта можно задать как ключ API, так и маркер доступа. Мы рекомендуем использовать аутентификацию с помощью Microsoft Entra ID вместо установки значения
ApiKeyи запуска быстрого старта с аргументом--use-token-credential.Замените значение (необязательно) ключом
ApiKeyAPI Foundry и заменитеEndpointзначение конечной точкой ресурса. При необходимости можно также изменить значения модели, голоса и инструкций.Дополнительные сведения о бессерверной проверке подлинности и настройке переменных среды.
В файле
csharp.csprojдобавьте следующие сведения для подключения appsettings.json:<ItemGroup> <None Update="appsettings.json"> <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory> </None> </ItemGroup>Замените содержимое
Program.csследующим кодом. Этот код создает базовый голосовой агент с помощью одной из встроенных моделей. Более подробную версию см. в примере на сайте GitHub.// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. using System; using System.CommandLine; using System.Threading; using System.Threading.Tasks; using System.Threading.Channels; using System.Collections.Generic; using Azure.AI.VoiceLive; using Azure.Core; using Azure.Core.Pipeline; using Azure.Identity; using Microsoft.Extensions.Configuration; using Microsoft.Extensions.Logging; using NAudio.Wave; namespace Azure.AI.VoiceLive.Samples { /// <summary> /// FILE: Program.cs (Consolidated) /// </summary> /// <remarks> /// DESCRIPTION: /// This consolidated sample demonstrates the fundamental capabilities of the VoiceLive SDK by creating /// a basic voice assistant that can engage in natural conversation with proper interruption /// handling. This serves as the foundational example that showcases the core value /// proposition of unified speech-to-speech interaction. /// /// All necessary code has been consolidated into this single file for easy distribution and execution. /// /// USAGE: /// dotnet run /// /// Set the environment variables with your own values before running the sample: /// 1) AZURE_VOICELIVE_API_KEY - The Azure VoiceLive API key /// 2) AZURE_VOICELIVE_ENDPOINT - The Azure VoiceLive endpoint /// /// Or update appsettings.json with your values. /// /// REQUIREMENTS: /// - Azure.AI.VoiceLive /// - Azure.Identity /// - NAudio (for audio capture and playback) /// - Microsoft.Extensions.Configuration /// - System.CommandLine /// - System.Threading.Channels /// </remarks> public class Program { /// <summary> /// Main entry point for the Voice Assistant sample. /// </summary> /// <param name="args"></param> /// <returns></returns> public static async Task<int> Main(string[] args) { // Create command line interface var rootCommand = CreateRootCommand(); return await rootCommand.InvokeAsync(args).ConfigureAwait(false); } private static RootCommand CreateRootCommand() { var rootCommand = new RootCommand("Basic Voice Assistant using Azure VoiceLive SDK"); var apiKeyOption = new Option<string?>( "--api-key", "Azure VoiceLive API key. If not provided, will use AZURE_VOICELIVE_API_KEY environment variable."); var endpointOption = new Option<string>( "--endpoint", () => "wss://api.voicelive.com/v1", "Azure VoiceLive endpoint"); var modelOption = new Option<string>( "--model", () => "gpt-4o", "VoiceLive model to use"); var voiceOption = new Option<string>( "--voice", () => "en-US-AvaNeural", "Voice to use for the assistant"); var instructionsOption = new Option<string>( "--instructions", () => "You are a helpful AI assistant. Respond naturally and conversationally. Keep your responses concise but engaging.", "System instructions for the AI assistant"); var useTokenCredentialOption = new Option<bool>( "--use-token-credential", "Use Azure token credential instead of API key"); var verboseOption = new Option<bool>( "--verbose", "Enable verbose logging"); rootCommand.AddOption(apiKeyOption); rootCommand.AddOption(endpointOption); rootCommand.AddOption(modelOption); rootCommand.AddOption(voiceOption); rootCommand.AddOption(instructionsOption); rootCommand.AddOption(useTokenCredentialOption); rootCommand.AddOption(verboseOption); rootCommand.SetHandler(async ( string? apiKey, string endpoint, string model, string voice, string instructions, bool useTokenCredential, bool verbose) => { await RunVoiceAssistantAsync(apiKey, endpoint, model, voice, instructions, useTokenCredential, verbose).ConfigureAwait(false); }, apiKeyOption, endpointOption, modelOption, voiceOption, instructionsOption, useTokenCredentialOption, verboseOption); return rootCommand; } private static async Task RunVoiceAssistantAsync( string? apiKey, string endpoint, string model, string voice, string instructions, bool useTokenCredential, bool verbose) { // Setup configuration var configuration = new ConfigurationBuilder() .AddJsonFile("appsettings.json", optional: true) .AddEnvironmentVariables() .Build(); // Override with command line values if provided apiKey ??= configuration["VoiceLive:ApiKey"] ?? Environment.GetEnvironmentVariable("AZURE_VOICELIVE_API_KEY"); endpoint = configuration["VoiceLive:Endpoint"] ?? endpoint; model = configuration["VoiceLive:Model"] ?? model; voice = configuration["VoiceLive:Voice"] ?? voice; instructions = configuration["VoiceLive:Instructions"] ?? instructions; // Setup logging using var loggerFactory = LoggerFactory.Create(builder => { builder.AddConsole(); if (verbose) { builder.SetMinimumLevel(LogLevel.Debug); } else { builder.SetMinimumLevel(LogLevel.Information); } }); var logger = loggerFactory.CreateLogger<Program>(); // Validate credentials if (string.IsNullOrEmpty(apiKey) && !useTokenCredential) { Console.WriteLine("❌ Error: No authentication provided"); Console.WriteLine("Please provide an API key using --api-key or set AZURE_VOICELIVE_API_KEY environment variable,"); Console.WriteLine("or use --use-token-credential for Azure authentication."); return; } // Check audio system before starting if (!CheckAudioSystem(logger)) { return; } try { // Create client with appropriate credential VoiceLiveClient client; if (useTokenCredential) { var tokenCredential = new DefaultAzureCredential(); client = new VoiceLiveClient(new Uri(endpoint), tokenCredential, new VoiceLiveClientOptions()); logger.LogInformation("Using Azure token credential"); } else { var keyCredential = new Azure.AzureKeyCredential(apiKey!); client = new VoiceLiveClient(new Uri(endpoint), keyCredential, new VoiceLiveClientOptions()); logger.LogInformation("Using API key credential"); } // Create and start voice assistant using var assistant = new BasicVoiceAssistant( client, model, voice, instructions, loggerFactory); // Setup cancellation token for graceful shutdown using var cancellationTokenSource = new CancellationTokenSource(); Console.CancelKeyPress += (sender, e) => { e.Cancel = true; logger.LogInformation("Received shutdown signal"); cancellationTokenSource.Cancel(); }; // Start the assistant await assistant.StartAsync(cancellationTokenSource.Token).ConfigureAwait(false); } catch (OperationCanceledException) { Console.WriteLine("\n👋 Voice assistant shut down. Goodbye!"); } catch (Exception ex) { logger.LogError(ex, "Fatal error"); Console.WriteLine($"❌ Error: {ex.Message}"); } } private static bool CheckAudioSystem(ILogger logger) { try { // Try input (default device) using (var waveIn = new WaveInEvent { WaveFormat = new WaveFormat(24000, 16, 1), BufferMilliseconds = 50 }) { // Start/Stop to force initialization and surface any device errors waveIn.DataAvailable += (_, __) => { }; waveIn.StartRecording(); waveIn.StopRecording(); } // Try output (default device) var buffer = new BufferedWaveProvider(new WaveFormat(24000, 16, 1)) { BufferDuration = TimeSpan.FromMilliseconds(200) }; using (var waveOut = new WaveOutEvent { DesiredLatency = 100 }) { waveOut.Init(buffer); // Playing isn't strictly required to validate a device, but it's safe waveOut.Play(); waveOut.Stop(); } logger.LogInformation("Audio system check passed (default input/output initialized)."); return true; } catch (Exception ex) { Console.WriteLine($"❌ Audio system check failed: {ex.Message}"); return false; } } } /// <summary> /// Basic voice assistant implementing the VoiceLive SDK patterns. ///</summary> /// <remarks> /// This sample now demonstrates some of the new convenience methods added to the VoiceLive SDK: /// - ClearStreamingAudioAsync() - Clears all input audio currently being streamed /// - CancelResponseAsync() - Cancels the current response generation (existing method) /// - ConfigureSessionAsync() - Configures session options (existing method) /// /// Additional convenience methods available but not shown in this sample: /// - StartAudioTurnAsync() / EndAudioTurnAsync() / CancelAudioTurnAsync() - Audio turn management /// - AppendAudioToTurnAsync() - Append audio data to an ongoing turn /// - ConnectAvatarAsync() - Connect avatar with SDP for media negotiation /// /// These methods provide a more developer-friendly API similar to the OpenAI SDK, /// eliminating the need to manually construct and populate ClientEvent classes. /// </remarks> public class BasicVoiceAssistant : IDisposable { private readonly VoiceLiveClient _client; private readonly string _model; private readonly string _voice; private readonly string _instructions; private readonly ILogger<BasicVoiceAssistant> _logger; private readonly ILoggerFactory _loggerFactory; private VoiceLiveSession? _session; private AudioProcessor? _audioProcessor; private bool _disposed; // Tracks whether an assistant response is currently active (created and not yet completed) private bool _responseActive; // Tracks whether the assistant can still cancel the current response (between ResponseCreated and ResponseDone) private bool _canCancelResponse; /// <summary> /// Initializes a new instance of the BasicVoiceAssistant class. /// </summary> /// <param name="client">The VoiceLive client.</param> /// <param name="model">The model to use.</param> /// <param name="voice">The voice to use.</param> /// <param name="instructions">The system instructions.</param> /// <param name="loggerFactory">Logger factory for creating loggers.</param> public BasicVoiceAssistant( VoiceLiveClient client, string model, string voice, string instructions, ILoggerFactory loggerFactory) { _client = client ?? throw new ArgumentNullException(nameof(client)); _model = model ?? throw new ArgumentNullException(nameof(model)); _voice = voice ?? throw new ArgumentNullException(nameof(voice)); _instructions = instructions ?? throw new ArgumentNullException(nameof(instructions)); _loggerFactory = loggerFactory ?? throw new ArgumentNullException(nameof(loggerFactory)); _logger = loggerFactory.CreateLogger<BasicVoiceAssistant>(); } /// <summary> /// Start the voice assistant session. /// </summary> /// <param name="cancellationToken">Cancellation token for stopping the session.</param> public async Task StartAsync(CancellationToken cancellationToken = default) { try { _logger.LogInformation("Connecting to VoiceLive API with model {Model}", _model); // Start VoiceLive session _session = await _client.StartSessionAsync(_model, cancellationToken).ConfigureAwait(false); // Initialize audio processor _audioProcessor = new AudioProcessor(_session, _loggerFactory.CreateLogger<AudioProcessor>()); // Configure session for voice conversation await SetupSessionAsync(cancellationToken).ConfigureAwait(false); // Start audio systems await _audioProcessor.StartPlaybackAsync().ConfigureAwait(false); await _audioProcessor.StartCaptureAsync().ConfigureAwait(false); _logger.LogInformation("Voice assistant ready! Start speaking..."); Console.WriteLine(); Console.WriteLine("=" + new string('=', 59)); Console.WriteLine("🎤 VOICE ASSISTANT READY"); Console.WriteLine("Start speaking to begin conversation"); Console.WriteLine("Press Ctrl+C to exit"); Console.WriteLine("=" + new string('=', 59)); Console.WriteLine(); // Process events await ProcessEventsAsync(cancellationToken).ConfigureAwait(false); } catch (OperationCanceledException) { _logger.LogInformation("Received cancellation signal, shutting down..."); } catch (Exception ex) { _logger.LogError(ex, "Connection error"); throw; } finally { // Cleanup if (_audioProcessor != null) { await _audioProcessor.CleanupAsync().ConfigureAwait(false); } } } /// <summary> /// Configure the VoiceLive session for audio conversation. /// </summary> private async Task SetupSessionAsync(CancellationToken cancellationToken) { _logger.LogInformation("Setting up voice conversation session..."); // Azure voice var azureVoice = new AzureStandardVoice(_voice); // Create strongly typed turn detection configuration var turnDetectionConfig = new ServerVadTurnDetection { Threshold = 0.5f, PrefixPadding = TimeSpan.FromMilliseconds(300), SilenceDuration = TimeSpan.FromMilliseconds(500) }; // Create conversation session options var sessionOptions = new VoiceLiveSessionOptions { InputAudioEchoCancellation = new AudioEchoCancellation(), Model = _model, Instructions = _instructions, Voice = azureVoice, InputAudioFormat = InputAudioFormat.Pcm16, OutputAudioFormat = OutputAudioFormat.Pcm16, TurnDetection = turnDetectionConfig }; // Ensure modalities include audio sessionOptions.Modalities.Clear(); sessionOptions.Modalities.Add(InteractionModality.Text); sessionOptions.Modalities.Add(InteractionModality.Audio); await _session!.ConfigureSessionAsync(sessionOptions, cancellationToken).ConfigureAwait(false); _logger.LogInformation("Session configuration sent"); } /// <summary> /// Process events from the VoiceLive session. /// </summary> private async Task ProcessEventsAsync(CancellationToken cancellationToken) { try { await foreach (SessionUpdate serverEvent in _session!.GetUpdatesAsync(cancellationToken).ConfigureAwait(false)) { await HandleSessionUpdateAsync(serverEvent, cancellationToken).ConfigureAwait(false); } } catch (OperationCanceledException) { _logger.LogInformation("Event processing cancelled"); } catch (Exception ex) { _logger.LogError(ex, "Error processing events"); throw; } } /// <summary> /// Handle different types of server events from VoiceLive. /// </summary> private async Task HandleSessionUpdateAsync(SessionUpdate serverEvent, CancellationToken cancellationToken) { _logger.LogDebug("Received event: {EventType}", serverEvent.GetType().Name); switch (serverEvent) { case SessionUpdateSessionCreated sessionCreated: await HandleSessionCreatedAsync(sessionCreated, cancellationToken).ConfigureAwait(false); break; case SessionUpdateSessionUpdated sessionUpdated: _logger.LogInformation("Session updated successfully"); // Start audio capture once session is ready if (_audioProcessor != null) { await _audioProcessor.StartCaptureAsync().ConfigureAwait(false); } break; case SessionUpdateInputAudioBufferSpeechStarted speechStarted: _logger.LogInformation("🎤 User started speaking - stopping playback"); Console.WriteLine("🎤 Listening..."); // Stop current assistant audio playback (interruption handling) if (_audioProcessor != null) { await _audioProcessor.StopPlaybackAsync().ConfigureAwait(false); } // Only attempt cancellation / clearing if a response is active and cancellable if (_responseActive && _canCancelResponse) { // Cancel any ongoing response try { await _session!.CancelResponseAsync(cancellationToken).ConfigureAwait(false); _logger.LogInformation("🛑 Active response cancelled due to user barge-in"); } catch (Exception ex) { if (ex.Message.Contains("no active response", StringComparison.OrdinalIgnoreCase)) { _logger.LogDebug("Cancellation benign: response already completed"); } else { _logger.LogWarning(ex, "Response cancellation failed during barge-in"); } } // Clear any streaming audio still in transit try { await _session!.ClearStreamingAudioAsync(cancellationToken).ConfigureAwait(false); _logger.LogInformation("✨ Cleared streaming audio after cancellation"); } catch (Exception ex) { _logger.LogDebug(ex, "ClearStreamingAudio call failed (may not be supported in all scenarios)"); } } else { _logger.LogDebug("No active/cancellable response during barge-in; skipping cancellation"); } break; case SessionUpdateInputAudioBufferSpeechStopped speechStopped: _logger.LogInformation("🎤 User stopped speaking"); Console.WriteLine("🤔 Processing..."); // Restart playback system for response if (_audioProcessor != null) { await _audioProcessor.StartPlaybackAsync().ConfigureAwait(false); } break; case SessionUpdateResponseCreated responseCreated: _logger.LogInformation("🤖 Assistant response created"); _responseActive = true; _canCancelResponse = true; break; case SessionUpdateResponseAudioDelta audioDelta: // Stream audio response to speakers _logger.LogDebug("Received audio delta"); if (audioDelta.Delta != null && _audioProcessor != null) { byte[] audioData = audioDelta.Delta.ToArray(); await _audioProcessor.QueueAudioAsync(audioData).ConfigureAwait(false); } break; case SessionUpdateResponseAudioDone audioDone: _logger.LogInformation("🤖 Assistant finished speaking"); Console.WriteLine("🎤 Ready for next input..."); break; case SessionUpdateResponseDone responseDone: _logger.LogInformation("✅ Response complete"); _responseActive = false; _canCancelResponse = false; break; case SessionUpdateError errorEvent: _logger.LogError("❌ VoiceLive error: {ErrorMessage}", errorEvent.Error?.Message); Console.WriteLine($"Error: {errorEvent.Error?.Message}"); _responseActive = false; _canCancelResponse = false; break; default: _logger.LogDebug("Unhandled event type: {EventType}", serverEvent.GetType().Name); break; } } /// <summary> /// Handle session created event. /// </summary> private async Task HandleSessionCreatedAsync(SessionUpdateSessionCreated sessionCreated, CancellationToken cancellationToken) { _logger.LogInformation("Session ready: {SessionId}", sessionCreated.Session?.Id); // Start audio capture once session is ready if (_audioProcessor != null) { await _audioProcessor.StartCaptureAsync().ConfigureAwait(false); } } /// <summary> /// Dispose of resources. /// </summary> public void Dispose() { if (_disposed) return; _audioProcessor?.Dispose(); _session?.Dispose(); _disposed = true; } } /// <summary> /// Handles real-time audio capture and playback for the voice assistant. /// /// This processor demonstrates some of the new VoiceLive SDK convenience methods: /// - Uses existing SendInputAudioAsync() method for audio streaming /// - Shows how convenience methods simplify audio operations /// /// Additional convenience methods available in the SDK: /// - StartAudioTurnAsync() / AppendAudioToTurnAsync() / EndAudioTurnAsync() - Audio turn management /// - ClearStreamingAudioAsync() - Clear all streaming audio /// - ConnectAvatarAsync() - Avatar connection with SDP /// /// Threading Architecture: /// - Main thread: Event loop and UI /// - Capture thread: NAudio input stream reading /// - Send thread: Async audio data transmission to VoiceLive /// - Playback thread: NAudio output stream writing /// </summary> public class AudioProcessor : IDisposable { private readonly VoiceLiveSession _session; private readonly ILogger<AudioProcessor> _logger; // Audio configuration - PCM16, 24kHz, mono as specified private const int SampleRate = 24000; private const int Channels = 1; private const int BitsPerSample = 16; // NAudio components private WaveInEvent? _waveIn; private WaveOutEvent? _waveOut; private BufferedWaveProvider? _playbackBuffer; // Audio capture and playback state private bool _isCapturing; private bool _isPlaying; // Audio streaming channels private readonly Channel<byte[]> _audioSendChannel; private readonly Channel<byte[]> _audioPlaybackChannel; private readonly ChannelWriter<byte[]> _audioSendWriter; private readonly ChannelReader<byte[]> _audioSendReader; private readonly ChannelWriter<byte[]> _audioPlaybackWriter; private readonly ChannelReader<byte[]> _audioPlaybackReader; // Background tasks private Task? _audioSendTask; private Task? _audioPlaybackTask; private readonly CancellationTokenSource _cancellationTokenSource; private CancellationTokenSource _playbackCancellationTokenSource; /// <summary> /// Initializes a new instance of the AudioProcessor class. /// </summary> /// <param name="session">The VoiceLive session for audio communication.</param> /// <param name="logger">Logger for diagnostic information.</param> public AudioProcessor(VoiceLiveSession session, ILogger<AudioProcessor> logger) { _session = session ?? throw new ArgumentNullException(nameof(session)); _logger = logger ?? throw new ArgumentNullException(nameof(logger)); // Create unbounded channels for audio data _audioSendChannel = Channel.CreateUnbounded<byte[]>(); _audioSendWriter = _audioSendChannel.Writer; _audioSendReader = _audioSendChannel.Reader; _audioPlaybackChannel = Channel.CreateUnbounded<byte[]>(); _audioPlaybackWriter = _audioPlaybackChannel.Writer; _audioPlaybackReader = _audioPlaybackChannel.Reader; _cancellationTokenSource = new CancellationTokenSource(); _playbackCancellationTokenSource = new CancellationTokenSource(); _logger.LogInformation("AudioProcessor initialized with {SampleRate}Hz PCM16 mono audio", SampleRate); } /// <summary> /// Start capturing audio from microphone. /// </summary> public Task StartCaptureAsync() { if (_isCapturing) return Task.CompletedTask; _isCapturing = true; try { _waveIn = new WaveInEvent { WaveFormat = new WaveFormat(SampleRate, BitsPerSample, Channels), BufferMilliseconds = 50 // 50ms buffer for low latency }; _waveIn.DataAvailable += OnAudioDataAvailable; _waveIn.RecordingStopped += OnRecordingStopped; _waveIn.DeviceNumber = 0; _waveIn.StartRecording(); // Start audio send task _audioSendTask = ProcessAudioSendAsync(_cancellationTokenSource.Token); _logger.LogInformation("Started audio capture"); return Task.CompletedTask; } catch (Exception ex) { _logger.LogError(ex, "Failed to start audio capture"); _isCapturing = false; throw; } } /// <summary> /// Stop capturing audio. /// </summary> public async Task StopCaptureAsync() { if (!_isCapturing) return; _isCapturing = false; if (_waveIn != null) { _waveIn.StopRecording(); _waveIn.DataAvailable -= OnAudioDataAvailable; _waveIn.RecordingStopped -= OnRecordingStopped; _waveIn.Dispose(); _waveIn = null; } // Complete the send channel and wait for the send task _audioSendWriter.TryComplete(); if (_audioSendTask != null) { await _audioSendTask.ConfigureAwait(false); _audioSendTask = null; } _logger.LogInformation("Stopped audio capture"); } /// <summary> /// Initialize audio playback system. /// </summary> public Task StartPlaybackAsync() { if (_isPlaying) return Task.CompletedTask; _isPlaying = true; try { _waveOut = new WaveOutEvent { DesiredLatency = 100 // 100ms latency }; _playbackBuffer = new BufferedWaveProvider(new WaveFormat(SampleRate, BitsPerSample, Channels)) { BufferDuration = TimeSpan.FromSeconds(10), // 10 second buffer DiscardOnBufferOverflow = true }; _waveOut.Init(_playbackBuffer); _waveOut.Play(); _playbackCancellationTokenSource = new CancellationTokenSource(); // Start audio playback task _audioPlaybackTask = ProcessAudioPlaybackAsync(); _logger.LogInformation("Audio playback system ready"); return Task.CompletedTask; } catch (Exception ex) { _logger.LogError(ex, "Failed to initialize audio playback"); _isPlaying = false; throw; } } /// <summary> /// Stop audio playback and clear buffer. /// </summary> public async Task StopPlaybackAsync() { if (!_isPlaying) return; _isPlaying = false; // Clear the playback channel while (_audioPlaybackReader.TryRead(out _)) { } if (_playbackBuffer != null) { _playbackBuffer.ClearBuffer(); } if (_waveOut != null) { _waveOut.Stop(); _waveOut.Dispose(); _waveOut = null; } _playbackBuffer = null; // Complete the playback channel and wait for the playback task _playbackCancellationTokenSource.Cancel(); if (_audioPlaybackTask != null) { await _audioPlaybackTask.ConfigureAwait(false); _audioPlaybackTask = null; } _logger.LogInformation("Stopped audio playback"); } /// <summary> /// Queue audio data for playback. /// </summary> /// <param name="audioData">The audio data to queue.</param> public async Task QueueAudioAsync(byte[] audioData) { if (_isPlaying && audioData.Length > 0) { await _audioPlaybackWriter.WriteAsync(audioData).ConfigureAwait(false); } } /// <summary> /// Event handler for audio data available from microphone. /// </summary> private void OnAudioDataAvailable(object? sender, WaveInEventArgs e) { if (_isCapturing && e.BytesRecorded > 0) { byte[] audioData = new byte[e.BytesRecorded]; Array.Copy(e.Buffer, 0, audioData, 0, e.BytesRecorded); // Queue audio data for sending (non-blocking) if (!_audioSendWriter.TryWrite(audioData)) { _logger.LogWarning("Failed to queue audio data for sending - channel may be full"); } } } /// <summary> /// Event handler for recording stopped. /// </summary> private void OnRecordingStopped(object? sender, StoppedEventArgs e) { if (e.Exception != null) { _logger.LogError(e.Exception, "Audio recording stopped due to error"); } } /// <summary> /// Background task to process audio data and send to VoiceLive service. /// </summary> private async Task ProcessAudioSendAsync(CancellationToken cancellationToken) { try { await foreach (byte[] audioData in _audioSendReader.ReadAllAsync(cancellationToken).ConfigureAwait(false)) { if (cancellationToken.IsCancellationRequested) break; try { // Send audio data directly to the session using the convenience method // This demonstrates the existing SendInputAudioAsync convenience method // Other available methods: StartAudioTurnAsync, AppendAudioToTurnAsync, EndAudioTurnAsync await _session.SendInputAudioAsync(audioData, cancellationToken).ConfigureAwait(false); } catch (Exception ex) { _logger.LogError(ex, "Error sending audio data to VoiceLive"); // Continue processing other audio data } } } catch (OperationCanceledException) { // Expected when cancellation is requested } catch (Exception ex) { _logger.LogError(ex, "Error in audio send processing"); } } /// <summary> /// Background task to process audio playback. /// </summary> private async Task ProcessAudioPlaybackAsync() { try { CancellationTokenSource combinedTokenSource = CancellationTokenSource.CreateLinkedTokenSource(_playbackCancellationTokenSource.Token, _cancellationTokenSource.Token); var cancellationToken = combinedTokenSource.Token; await foreach (byte[] audioData in _audioPlaybackReader.ReadAllAsync(cancellationToken).ConfigureAwait(false)) { if (cancellationToken.IsCancellationRequested) break; try { if (_playbackBuffer != null && _isPlaying) { _playbackBuffer.AddSamples(audioData, 0, audioData.Length); } } catch (Exception ex) { _logger.LogError(ex, "Error in audio playback"); // Continue processing other audio data } } } catch (OperationCanceledException) { // Expected when cancellation is requested } catch (Exception ex) { _logger.LogError(ex, "Error in audio playback processing"); } } /// <summary> /// Clean up audio resources. /// </summary> public async Task CleanupAsync() { await StopCaptureAsync().ConfigureAwait(false); await StopPlaybackAsync().ConfigureAwait(false); _cancellationTokenSource.Cancel(); // Wait for background tasks to complete var tasks = new List<Task>(); if (_audioSendTask != null) tasks.Add(_audioSendTask); if (_audioPlaybackTask != null) tasks.Add(_audioPlaybackTask); if (tasks.Count > 0) { await Task.WhenAll(tasks).ConfigureAwait(false); } _logger.LogInformation("Audio processor cleaned up"); } /// <summary> /// Dispose of resources. /// </summary> public void Dispose() { CleanupAsync().Wait(); _cancellationTokenSource.Dispose(); } } }Запустите консольное приложение, чтобы начать динамическую беседу:
dotnet run --use-token-credential
Выходные данные
Выходные данные скрипта печатаются в консоли. Отображаются сообщения, указывающие состояние подключения, аудиопотока и воспроизведения. Звук воспроизводится обратно через динамики или наушники.
info: Azure.AI.VoiceLive.Samples.Program[0]
Audio system check passed (default input/output initialized).
info: Azure.AI.VoiceLive.Samples.Program[0]
Using Azure token credential
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
Connecting to VoiceLive API with model gpt-realtime
info: Azure.AI.VoiceLive.Samples.AudioProcessor[0]
AudioProcessor initialized with 24000Hz PCM16 mono audio
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
Setting up voice conversation session...
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
Session configuration sent
info: Azure.AI.VoiceLive.Samples.AudioProcessor[0]
Audio playback system ready
info: Azure.AI.VoiceLive.Samples.AudioProcessor[0]
Started audio capture
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
Voice assistant ready! Start speaking...
============================================================
🎤 VOICE ASSISTANT READY
Start speaking to begin conversation
Press Ctrl+C to exit
============================================================
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
Session ready: sess_CVnpwfxxxxxACIzrrr7
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
Session updated successfully
🎤 Listening...
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
🎤 User started speaking - stopping playback
info: Azure.AI.VoiceLive.Samples.AudioProcessor[0]
Stopped audio playback
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
✨ Used ClearStreamingAudioAsync convenience method
🤔 Processing...
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
🎤 User stopped speaking
info: Azure.AI.VoiceLive.Samples.AudioProcessor[0]
Audio playback system ready
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
🤖 Assistant response created
🎤 Ready for next input...
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
🤖 Assistant finished speaking
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
✅ Response complete
info: Azure.AI.VoiceLive.Samples.Program[0]
Received shutdown signal
info: Azure.AI.VoiceLive.Samples.BasicVoiceAssistant[0]
Event processing cancelled
info: Azure.AI.VoiceLive.Samples.AudioProcessor[0]
Stopped audio capture
info: Azure.AI.VoiceLive.Samples.AudioProcessor[0]
Stopped audio playback
info: Azure.AI.VoiceLive.Samples.AudioProcessor[0]
Audio processor cleaned up
info: Azure.AI.VoiceLive.Samples.AudioProcessor[0]
Audio processor cleaned up
В этой статье вы узнаете, как использовать Azure Speech в Foundry Tools для голосового вещания с моделями Microsoft Foundry с помощью VoiceLive SDK для Java.
Справочная документация | Пакет (Maven) | Дополнительные примеры на GitHub
Вы создаете и запускаете приложение для использования голосовой трансляции непосредственно с генерируемыми моделями ИИ для агентов голосовой связи в режиме реального времени.
Использование моделей позволяет напрямую указывать пользовательские инструкции (запросы) для каждого сеанса, обеспечивая большую гибкость для динамических или экспериментальных вариантов использования.
Модели могут быть предпочтительнее, если требуется точное управление параметрами сеанса или часто настраивать запрос или конфигурацию без обновления агента на портале.
Код для сеансов на основе модели проще в некоторых отношениях, так как он не требует управления идентификаторами агентов или настройкой для конкретного агента.
Прямое использование модели подходит для сценариев, когда абстракции уровня агента или встроенная логика не требуется.
Чтобы вместо этого использовать Voice live API с агентами, ознакомьтесь с кратким руководством по Voice live API для агентов.
Предпосылки
- Подписка Azure. Создайте его бесплатно.
- Пакет средств разработки Java (JDK) 11 или более поздней версии.
- Apache Maven для управления зависимостями и создания проекта.
- Ресурс Foundry, созданный в одном из поддерживаемых регионов. Дополнительные сведения о доступности регионов см. в разделе "Поддержка регионов".
- Ключ API или Azure CLI для проверки подлинности.
Подсказка
Чтобы использовать голос в реальном времени, вам не нужно развертывать аудиомодель с ресурсом Foundry. Голосовая трансляция полностью управляется, и модель автоматически развертывается для вас. Дополнительные сведения о доступности моделей см. в документации по голосовой трансляции.
Замечание
Для проверки подлинности без ключа с помощью идентификатора Microsoft Entra установите Azure CLI и назначьте Cognitive Services User роль учетной записи пользователя. Роли можно назначить в портале Azure в разделе Контроль доступа (IAM)>Добавить назначение ролей.
Краткое руководство
Создайте новую папку
voice-live-quickstartи перейдите в папку быстрого запуска, используя следующую команду:mkdir voice-live-quickstart && cd voice-live-quickstartpom.xmlСоздайте файл в корневом каталоге проекта со следующим содержимым:<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.azure.ai.voicelive</groupId> <artifactId>model-quickstart</artifactId> <version>1.0.0</version> <packaging>jar</packaging> <name>Azure VoiceLive Model Quickstart</name> <description>Model quickstart sample for Azure AI VoiceLive SDK</description> <properties> <maven.compiler.source>11</maven.compiler.source> <maven.compiler.target>11</maven.compiler.target> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <!-- Azure VoiceLive SDK --> <dependency> <groupId>com.azure</groupId> <artifactId>azure-ai-voicelive</artifactId> <version>1.0.0-beta.1</version> </dependency> <!-- Azure Core --> <dependency> <groupId>com.azure</groupId> <artifactId>azure-core</artifactId> <version>1.53.0</version> </dependency> <!-- Azure Identity for authentication --> <dependency> <groupId>com.azure</groupId> <artifactId>azure-identity</artifactId> <version>1.11.0</version> </dependency> <!-- Reactor Core for reactive programming --> <dependency> <groupId>io.projectreactor</groupId> <artifactId>reactor-core</artifactId> <version>3.5.11</version> </dependency> <!-- SLF4J for logging --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>2.0.9</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-simple</artifactId> <version>2.0.9</version> </dependency> </dependencies> <build> <sourceDirectory>.</sourceDirectory> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.11.0</version> <configuration> <source>11</source> <target>11</target> </configuration> </plugin> <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>exec-maven-plugin</artifactId> <version>3.1.0</version> <configuration> <mainClass>ModelQuickstart</mainClass> </configuration> </plugin> </plugins> </build> </project>Замечание
Конфигурация
<sourceDirectory>.</sourceDirectory>сообщает Maven искать исходные файлы Java в текущем каталоге вместо структуры по умолчаниюsrc/main/java. Это позволяет упростить структуру плоских проектов.Установка зависимостей:
mvn clean installНастройка проверки подлинности — скопируйте
application.properties.sampleвapplication.properties, затем обновите своими значениями.azure.voicelive.endpoint=https://your-resource-name.services.ai.azure.com/ azure.voicelive.api-key=your-api-key azure.voicelive.api-version=2025-10-01Замечание
Можно также использовать переменные среды вместо
application.properties. УстановитьAZURE_VOICELIVE_ENDPOINTиAZURE_VOICELIVE_API_KEY. Сначала приложение проверяетapplication.properties, а затем возвращается к переменным среды.Запустите пример:
mvn exec:javaЧтобы использовать проверку подлинности маркера Azure вместо ключа API:
az login mvn exec:java -Dexec.args="--use-token-credential"Замечание
В некоторых терминалах, таких как PowerShell, требуется экранировать аргументы. В PowerShell используйте
mvn exec:java `"-Dexec.args=--use-token-credential`"
Получение сведений о ресурсе
Создайте файл с именем .env в папке, в которой требуется запустить код.
.env В файле добавьте следующие переменные среды для проверки подлинности:
AZURE_VOICELIVE_ENDPOINT=<your_endpoint>
AZURE_VOICELIVE_MODEL=<your_model>
AZURE_VOICELIVE_API_VERSION=2025-10-01
AZURE_VOICELIVE_API_KEY=<your_api_key> # Only required if using API key authentication
Замените значения по умолчанию фактическими конечными точками, моделью, версией API и ключом API.
| Имя переменной | Ценность |
|---|---|
AZURE_VOICELIVE_ENDPOINT |
Это значение можно найти в разделе "Ключи и конечная точка доступа" при просмотре ресурса на портале Azure. |
AZURE_VOICELIVE_MODEL |
Модель, которую вы хотите использовать. Например, gpt-4o или gpt-realtime-mini. Дополнительные сведения о доступности моделей см. в обзорной документации по API голосовой трансляции. |
AZURE_VOICELIVE_API_VERSION |
Версия API, которую вы хотите использовать. Например: 2025-10-01. |
Дополнительные сведения о бессерверной проверке подлинности и настройке переменных среды.
Пример кода
ModelQuickstart.java Создайте файл со следующим кодом:
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import com.azure.ai.voicelive.VoiceLiveAsyncClient;
import com.azure.ai.voicelive.VoiceLiveClientBuilder;
import com.azure.ai.voicelive.VoiceLiveServiceVersion;
import com.azure.ai.voicelive.VoiceLiveSessionAsyncClient;
import com.azure.ai.voicelive.models.AudioEchoCancellation;
import com.azure.ai.voicelive.models.AudioInputTranscriptionOptions;
import com.azure.ai.voicelive.models.AudioInputTranscriptionOptionsModel;
import com.azure.ai.voicelive.models.AudioNoiseReduction;
import com.azure.ai.voicelive.models.AudioNoiseReductionType;
import com.azure.ai.voicelive.models.ClientEventSessionUpdate;
import com.azure.ai.voicelive.models.InputAudioFormat;
import com.azure.ai.voicelive.models.InteractionModality;
import com.azure.ai.voicelive.models.AzureStandardVoice;
import com.azure.ai.voicelive.models.OutputAudioFormat;
import com.azure.ai.voicelive.models.ServerEventType;
import com.azure.ai.voicelive.models.ServerVadTurnDetection;
import com.azure.ai.voicelive.models.SessionUpdate;
import com.azure.ai.voicelive.models.SessionUpdateError;
import com.azure.ai.voicelive.models.SessionUpdateResponseAudioDelta;
import com.azure.ai.voicelive.models.SessionUpdateSessionUpdated;
import com.azure.ai.voicelive.models.VoiceLiveSessionOptions;
import com.azure.core.credential.KeyCredential;
import com.azure.core.credential.TokenCredential;
import com.azure.core.util.BinaryData;
import com.azure.identity.AzureCliCredentialBuilder;
import reactor.core.publisher.Mono;
import reactor.core.scheduler.Schedulers;
import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.DataLine;
import javax.sound.sampled.LineUnavailableException;
import javax.sound.sampled.SourceDataLine;
import javax.sound.sampled.TargetDataLine;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.Properties;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReference;
/**
* Complete voice assistant sample demonstrating full-featured real-time voice conversation.
*
* <p><strong>NOTE:</strong> This is a comprehensive sample showing all features together.
* For easier understanding, see these focused samples:</p>
* <ul>
* <li>{@link BasicVoiceConversationSample} - Minimal setup and session management</li>
* <li>{@link MicrophoneInputSample} - Audio capture from microphone</li>
* <li>{@link AudioPlaybackSample} - Audio playback to speakers</li>
* <li>{@link AuthenticationMethodsSample} - Different authentication methods</li>
* </ul>
*
* <p>This sample demonstrates:</p>
* <ul>
* <li>Real-time microphone audio capture</li>
* <li>Streaming audio to VoiceLive service</li>
* <li>Receiving and playing audio responses</li>
* <li>Voice Activity Detection (VAD) with interruption handling</li>
* <li>Multi-threaded audio processing</li>
* <li>Audio transcription with Whisper</li>
* <li>Noise reduction and echo cancellation</li>
* <li>Dual authentication support (API key and token credential)</li>
* </ul>
*
* <p><strong>Environment Variables Required:</strong></p>
* <ul>
* <li>AZURE_VOICELIVE_ENDPOINT - The VoiceLive service endpoint URL</li>
* <li>AZURE_VOICELIVE_API_KEY - The API key (required if not using --use-token-credential)</li>
* </ul>
*
* <p><strong>Audio Requirements:</strong></p>
* The sample requires a working microphone and speakers/headphones.
* Audio format is 24kHz, 16-bit PCM, mono as required by the VoiceLive service.
*
* <p><strong>How to Run:</strong></p>
* <pre>{@code
* # With API Key (default):
* mvn exec:java -Dexec.mainClass="com.azure.ai.voicelive.VoiceAssistantSample" -Dexec.classpathScope=test
*
* # With Token Credential:
* mvn exec:java -Dexec.mainClass="ModelQuickstart" -Dexec.classpathScope=test -Dexec.args="--use-token-credential"
* }</pre>
*/
public final class ModelQuickstart {
// Service configuration constants
private static final String DEFAULT_API_VERSION = "2025-10-01";
private static final String DEFAULT_MODEL = "gpt-realtime";
private static final String DEFAULT_VOICE = "en-US-Ava:DragonHDLatestNeural";
private static final String DEFAULT_INSTRUCTIONS = "You are a helpful AI voice assistant. Respond naturally and conversationally. Keep your responses concise but engaging. Speak as if having a real conversation.";
// Environment variable names
private static final String ENV_ENDPOINT = "AZURE_VOICELIVE_ENDPOINT";
private static final String ENV_API_KEY = "AZURE_VOICELIVE_API_KEY";
// Audio format constants (VoiceLive requirements)
private static final int SAMPLE_RATE = 24000; // 24kHz as required by VoiceLive
private static final int CHANNELS = 1; // Mono
private static final int SAMPLE_SIZE_BITS = 16; // 16-bit PCM
private static final int CHUNK_SIZE = 1200; // 50ms chunks (24000 * 0.05)
private static final int AUDIO_BUFFER_SIZE_MULTIPLIER = 4;
// Private constructor to prevent instantiation
private ModelQuickstart() {
throw new UnsupportedOperationException("Utility class cannot be instantiated");
}
/**
* Audio packet for playback queue management.
* Uses sequence numbers to support interruption handling.
*/
private static class AudioPlaybackPacket {
final int sequenceNumber;
final byte[] audioData;
AudioPlaybackPacket(int sequenceNumber, byte[] audioData) {
this.sequenceNumber = sequenceNumber;
this.audioData = audioData;
}
}
/**
* Handles real-time audio capture from microphone and playback to speakers.
*
* <p>This class manages two separate threads:</p>
* <ul>
* <li>Capture thread: Continuously reads audio from microphone and sends to VoiceLive service</li>
* <li>Playback thread: Receives audio responses and plays them through speakers</li>
* </ul>
*
* <p>Supports interruption handling where user speech can cancel ongoing assistant responses.</p>
*/
private static class AudioProcessor {
private final VoiceLiveSessionAsyncClient session;
private final AudioFormat audioFormat;
// Audio capture components
private TargetDataLine microphone;
private final AtomicBoolean isCapturing = new AtomicBoolean(false);
// Audio playback components
private SourceDataLine speaker;
private final BlockingQueue<AudioPlaybackPacket> playbackQueue = new LinkedBlockingQueue<>();
private final AtomicBoolean isPlaying = new AtomicBoolean(false);
private final AtomicInteger nextSequenceNumber = new AtomicInteger(0);
private final AtomicInteger playbackBase = new AtomicInteger(0);
AudioProcessor(VoiceLiveSessionAsyncClient session) {
this.session = session;
this.audioFormat = new AudioFormat(
AudioFormat.Encoding.PCM_SIGNED,
SAMPLE_RATE,
SAMPLE_SIZE_BITS,
CHANNELS,
CHANNELS * SAMPLE_SIZE_BITS / 8, // frameSize
SAMPLE_RATE,
false // bigEndian
);
}
/**
* Start capturing audio from microphone
*/
void startCapture() {
if (isCapturing.get()) {
return;
}
try {
DataLine.Info micInfo = new DataLine.Info(TargetDataLine.class, audioFormat);
if (!AudioSystem.isLineSupported(micInfo)) {
throw new UnsupportedOperationException("Microphone not supported with required format");
}
microphone = (TargetDataLine) AudioSystem.getLine(micInfo);
microphone.open(audioFormat, CHUNK_SIZE * AUDIO_BUFFER_SIZE_MULTIPLIER);
microphone.start();
isCapturing.set(true);
// Start capture thread
Thread captureThread = new Thread(this::captureAudioLoop, "VoiceLive-AudioCapture");
captureThread.setDaemon(true);
captureThread.start();
System.out.println("🎤 Microphone capture started");
} catch (LineUnavailableException e) {
System.err.println("❌ Failed to start microphone: " + e.getMessage());
throw new RuntimeException("Failed to initialize microphone", e);
}
}
/**
* Starts audio playback system.
*/
void startPlayback() {
if (isPlaying.get()) {
return;
}
try {
DataLine.Info speakerInfo = new DataLine.Info(SourceDataLine.class, audioFormat);
if (!AudioSystem.isLineSupported(speakerInfo)) {
throw new UnsupportedOperationException("Speaker not supported with required format");
}
speaker = (SourceDataLine) AudioSystem.getLine(speakerInfo);
speaker.open(audioFormat, CHUNK_SIZE * AUDIO_BUFFER_SIZE_MULTIPLIER);
speaker.start();
isPlaying.set(true);
// Start playback thread
Thread playbackThread = new Thread(this::playbackAudioLoop, "VoiceLive-AudioPlayback");
playbackThread.setDaemon(true);
playbackThread.start();
System.out.println("🔊 Audio playback started");
} catch (LineUnavailableException e) {
System.err.println("❌ Failed to start speaker: " + e.getMessage());
throw new RuntimeException("Failed to initialize speaker", e);
}
}
/**
* Audio capture loop - runs in separate thread
*/
private void captureAudioLoop() {
byte[] buffer = new byte[CHUNK_SIZE * 2]; // 16-bit samples
System.out.println("🎤 Audio capture loop started");
while (isCapturing.get() && microphone != null) {
try {
int bytesRead = microphone.read(buffer, 0, buffer.length);
if (bytesRead > 0) {
// Send audio to VoiceLive service
byte[] audioChunk = Arrays.copyOf(buffer, bytesRead);
// Send audio asynchronously using the session's audio buffer append
session.sendInputAudio(BinaryData.fromBytes(audioChunk))
.subscribeOn(Schedulers.boundedElastic())
.subscribe(
v -> {}, // onNext
error -> {
// Only log non-interruption errors
if (!error.getMessage().contains("cancelled")) {
System.err.println("❌ Error sending audio: " + error.getMessage());
}
}
);
}
} catch (Exception e) {
if (isCapturing.get()) {
System.err.println("❌ Error in audio capture: " + e.getMessage());
}
break;
}
}
System.out.println("🎤 Audio capture loop ended");
}
/**
* Audio playback loop - runs in separate thread
*/
private void playbackAudioLoop() {
while (isPlaying.get()) {
try {
AudioPlaybackPacket packet = playbackQueue.take(); // Blocking wait
if (packet.audioData == null) {
// Shutdown signal
break;
}
// Check if packet should be skipped (interrupted)
int currentBase = playbackBase.get();
if (packet.sequenceNumber < currentBase) {
// Skip interrupted audio
continue;
}
// Play the audio
if (speaker != null && speaker.isOpen()) {
speaker.write(packet.audioData, 0, packet.audioData.length);
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
} catch (Exception e) {
System.err.println("❌ Error in audio playback: " + e.getMessage());
}
}
}
/**
* Queue audio data for playback
*/
void queueAudio(byte[] audioData) {
if (audioData != null && audioData.length > 0) {
int seqNum = nextSequenceNumber.getAndIncrement();
playbackQueue.offer(new AudioPlaybackPacket(seqNum, audioData));
}
}
/**
* Skip pending audio (for interruption handling)
*/
void skipPendingAudio() {
playbackBase.set(nextSequenceNumber.get());
playbackQueue.clear();
// Also drain the speaker buffer to stop playback immediately
if (speaker != null && speaker.isOpen()) {
speaker.flush();
}
}
/**
* Stop capture and playback
*/
void shutdown() {
// Stop capture
isCapturing.set(false);
if (microphone != null) {
microphone.stop();
microphone.close();
microphone = null;
}
System.out.println("🎤 Microphone capture stopped");
// Stop playback
isPlaying.set(false);
playbackQueue.offer(new AudioPlaybackPacket(-1, null)); // Shutdown signal
if (speaker != null) {
speaker.stop();
speaker.close();
speaker = null;
}
System.out.println("🔊 Audio playback stopped");
}
}
/**
* Configuration class to hold application settings.
*/
private static class Config {
String endpoint;
String apiKey;
String model = DEFAULT_MODEL;
String voice = DEFAULT_VOICE;
String instructions = DEFAULT_INSTRUCTIONS;
boolean useTokenCredential = false;
static Config load(String[] args) {
Config config = new Config();
// 1. Load from application.properties first
Properties props = loadProperties();
if (props != null) {
config.endpoint = props.getProperty("azure.voicelive.endpoint");
config.apiKey = props.getProperty("azure.voicelive.api-key");
config.model = props.getProperty("azure.voicelive.model", DEFAULT_MODEL);
config.voice = props.getProperty("azure.voicelive.voice", DEFAULT_VOICE);
config.instructions = props.getProperty("azure.voicelive.instructions", DEFAULT_INSTRUCTIONS);
}
// 2. Override with environment variables if present
if (System.getenv(ENV_ENDPOINT) != null) {
config.endpoint = System.getenv(ENV_ENDPOINT);
}
if (System.getenv(ENV_API_KEY) != null) {
config.apiKey = System.getenv(ENV_API_KEY);
}
if (System.getenv("AZURE_VOICELIVE_MODEL") != null) {
config.model = System.getenv("AZURE_VOICELIVE_MODEL");
}
if (System.getenv("AZURE_VOICELIVE_VOICE") != null) {
config.voice = System.getenv("AZURE_VOICELIVE_VOICE");
}
if (System.getenv("AZURE_VOICELIVE_INSTRUCTIONS") != null) {
config.instructions = System.getenv("AZURE_VOICELIVE_INSTRUCTIONS");
}
// 3. Parse command line arguments (highest priority)
for (int i = 0; i < args.length; i++) {
switch (args[i]) {
case "--endpoint":
if (i + 1 < args.length) config.endpoint = args[++i];
break;
case "--api-key":
if (i + 1 < args.length) config.apiKey = args[++i];
break;
case "--model":
if (i + 1 < args.length) config.model = args[++i];
break;
case "--voice":
if (i + 1 < args.length) config.voice = args[++i];
break;
case "--instructions":
if (i + 1 < args.length) config.instructions = args[++i];
break;
case "--use-token-credential":
config.useTokenCredential = true;
break;
}
}
return config;
}
}
/**
* Load configuration from application.properties file.
*/
private static Properties loadProperties() {
Properties props = new Properties();
try (InputStream input = new FileInputStream("application.properties")) {
props.load(input);
System.out.println("✓ Loaded configuration from application.properties");
return props;
} catch (IOException e) {
// File not found or cannot be read - this is OK, will use env vars
return null;
}
}
/**
* Main method to run the voice assistant sample.
*
* <p>Configuration priority (highest to lowest):</p>
* <ol>
* <li>Command line arguments</li>
* <li>Environment variables</li>
* <li>application.properties file</li>
* </ol>
*
* <p>Supported command line arguments:</p>
* <ul>
* <li>--endpoint <url> - VoiceLive endpoint URL</li>
* <li>--api-key <key> - API key for authentication</li>
* <li>--model <model> - Model to use (default: gpt-realtime)</li>
* <li>--voice <voice> - Voice name (e.g., en-US-Ava:DragonHDLatestNeural)</li>
* <li>--instructions <text> - Custom system instructions</li>
* <li>--use-token-credential - Use Azure CLI authentication instead of API key</li>
* </ul>
*
* @param args Command line arguments
*/
public static void main(String[] args) {
// Load configuration
Config config = Config.load(args);
// Validate configuration
if (config.endpoint == null) {
printUsage();
return;
}
if (!config.useTokenCredential && config.apiKey == null) {
System.err.println("❌ API key is required when not using --use-token-credential");
System.err.println(" Set it via:");
System.err.println(" - application.properties: azure.voicelive.api-key=<your-key>");
System.err.println(" - Environment variable: AZURE_VOICELIVE_API_KEY=<your-key>");
System.err.println(" - Command line: --api-key <your-key>");
printUsage();
return;
}
// Check audio system availability
if (!checkAudioSystem()) {
System.err.println("❌ Audio system check failed. Please ensure microphone and speakers are available.");
return;
}
System.out.println("🎙️ Starting Voice Assistant...");
System.out.println(" Model: " + config.model);
if (config.voice != null) {
System.out.println(" Voice: " + config.voice);
}
try {
if (config.useTokenCredential) {
// Use token credential authentication (Azure CLI)
System.out.println("🔑 Using Token Credential authentication (Azure CLI)");
System.out.println(" Make sure you have run 'az login' before running this sample");
TokenCredential credential = new AzureCliCredentialBuilder().build();
runVoiceAssistant(config, credential);
} else {
// Use API Key authentication
System.out.println("🔑 Using API Key authentication");
runVoiceAssistant(config, new KeyCredential(config.apiKey));
}
System.out.println("✓ Voice Assistant completed successfully");
} catch (Exception e) {
System.err.println("❌ Voice Assistant failed: " + e.getMessage());
e.printStackTrace();
}
}
/**
* Check if audio system is available
*/
private static boolean checkAudioSystem() {
try {
AudioFormat format = new AudioFormat(SAMPLE_RATE, SAMPLE_SIZE_BITS, CHANNELS, true, false);
// Check microphone
DataLine.Info micInfo = new DataLine.Info(TargetDataLine.class, format);
if (!AudioSystem.isLineSupported(micInfo)) {
System.err.println("❌ No compatible microphone found");
return false;
}
// Check speaker
DataLine.Info speakerInfo = new DataLine.Info(SourceDataLine.class, format);
if (!AudioSystem.isLineSupported(speakerInfo)) {
System.err.println("❌ No compatible speaker found");
return false;
}
System.out.println("✓ Audio system check passed");
return true;
} catch (Exception e) {
System.err.println("❌ Audio system check failed: " + e.getMessage());
return false;
}
}
/**
* Prints usage instructions for setting up environment variables.
*/
private static void printUsage() {
System.err.println("\n═══════════════════════════════════════════════════════════════");
System.err.println("Usage: mvn exec:java [options]");
System.err.println("═══════════════════════════════════════════════════════════════");
System.err.println("\nConfiguration (in priority order):");
System.err.println(" 1. Command line arguments (--endpoint, --api-key, etc.)");
System.err.println(" 2. Environment variables (AZURE_VOICELIVE_ENDPOINT, etc.)");
System.err.println(" 3. application.properties file");
System.err.println("\nCommand Line Options:");
System.err.println(" --endpoint <url> VoiceLive endpoint URL");
System.err.println(" --api-key <key> API key for authentication");
System.err.println(" --model <model> Model to use (default: gpt-realtime)");
System.err.println(" --voice <voice> Voice name (e.g., en-US-Ava:DragonHDLatestNeural)");
System.err.println(" --instructions <text> Custom system instructions");
System.err.println(" --use-token-credential Use Azure CLI authentication");
System.err.println("\nExamples:");
System.err.println(" # Using application.properties:");
System.err.println(" mvn exec:java");
System.err.println("\n # Using command line arguments:");
System.err.println(" mvn exec:java -Dexec.args=\"--endpoint https://... --api-key <key>\"");
System.err.println("\n # Using Azure CLI authentication:");
System.err.println(" mvn exec:java -Dexec.args=\"--use-token-credential\"");
System.err.println("\n # With custom model and voice:");
System.err.println(" mvn exec:java -Dexec.args=\"--model gpt-4.1 --voice en-US-JennyNeural\"");
System.err.println("═══════════════════════════════════════════════════════════════\n");
}
/**
* Run the voice assistant with API key authentication.
*
* @param config The configuration object
* @param credential The API key credential
*/
private static void runVoiceAssistant(Config config, KeyCredential credential) {
System.out.println("🔧 Initializing VoiceLive client:");
System.out.println(" Endpoint: " + config.endpoint);
// Create the VoiceLive client
VoiceLiveAsyncClient client = new VoiceLiveClientBuilder()
.endpoint(config.endpoint)
.credential(credential)
.serviceVersion(VoiceLiveServiceVersion.V2025_10_01)
.buildAsyncClient();
runVoiceAssistantWithClient(client, config);
}
/**
* Run the voice assistant with Azure AD authentication.
*
* @param config The configuration object
* @param credential The token credential
*/
private static void runVoiceAssistant(Config config, TokenCredential credential) {
System.out.println("🔧 Initializing VoiceLive client:");
System.out.println(" Endpoint: " + config.endpoint);
// Create the VoiceLive client
VoiceLiveAsyncClient client = new VoiceLiveClientBuilder()
.endpoint(config.endpoint)
.credential(credential)
.serviceVersion(VoiceLiveServiceVersion.V2025_10_01)
.buildAsyncClient();
runVoiceAssistantWithClient(client, config);
}
/**
* Run the voice assistant with the configured client.
*
* @param client The VoiceLive async client
* @param config The configuration object
*/
private static void runVoiceAssistantWithClient(VoiceLiveAsyncClient client, Config config) {
System.out.println("✓ VoiceLive client created");
// Configure session options for voice conversation
VoiceLiveSessionOptions sessionOptions = createVoiceSessionOptions(config);
AtomicReference<AudioProcessor> audioProcessorRef = new AtomicReference<>();
// Execute the reactive workflow - start with the configured model
client.startSession(config.model)
.flatMap(session -> {
System.out.println("✓ Session started successfully");
// Create audio processor
AudioProcessor audioProcessor = new AudioProcessor(session);
audioProcessorRef.set(audioProcessor);
// Subscribe to receive server events asynchronously
session.receiveEvents()
.doOnSubscribe(subscription -> System.out.println("🔗 Subscribed to event stream"))
.doOnComplete(() -> System.out.println("⚠️ Event stream completed (this might indicate a connection issue)"))
.doOnError(error -> System.out.println("❌ Event stream error: " + error.getMessage()))
.subscribe(
event -> handleServerEvent(event, audioProcessor),
error -> System.err.println("❌ Error receiving events: " + error.getMessage()),
() -> System.out.println("✓ Event stream completed")
);
System.out.println("📤 Sending session.update configuration...");
ClientEventSessionUpdate updateEvent = new ClientEventSessionUpdate(sessionOptions);
session.sendEvent(updateEvent)
.doOnSuccess(v -> System.out.println("✓ Session configuration sent"))
.doOnError(error -> System.err.println("❌ Failed to send session.update: " + error.getMessage()))
.subscribe();
// Start audio systems
audioProcessor.startPlayback();
System.out.println("🎤 VOICE ASSISTANT READY");
System.out.println("Start speaking to begin conversation");
System.out.println("Press Ctrl+C to exit");
// Install shutdown hook for graceful cleanup
Runtime.getRuntime().addShutdownHook(new Thread(() -> {
System.out.println("\n🛑 Shutting down gracefully...");
audioProcessor.shutdown();
}));
// Keep the reactive chain alive to continue processing events
// Mono.never() prevents the chain from completing, allowing the event stream to run
// The shutdown hook above handles cleanup when the JVM exits (Ctrl+C)
// Note: In production, use a proper signal mechanism (e.g., CountDownLatch, CompletableFuture)
return Mono.never();
})
.doOnError(error -> System.err.println("❌ Error: " + error.getMessage()))
.doFinally(signalType -> {
// Cleanup audio processor
AudioProcessor audioProcessor = audioProcessorRef.get();
if (audioProcessor != null) {
audioProcessor.shutdown();
}
})
.block(); // Block only for demo purposes; use reactive patterns in production
}
/**
* Create session configuration for voice conversation
*/
private static VoiceLiveSessionOptions createVoiceSessionOptions(Config config) {
System.out.println("🔧 Creating session configuration:");
// Create server VAD configuration similar to Python sample
ServerVadTurnDetection turnDetection = new ServerVadTurnDetection()
.setThreshold(0.5)
.setPrefixPaddingMs(300)
.setSilenceDurationMs(500)
.setInterruptResponse(true)
.setAutoTruncate(true)
.setCreateResponse(true);
// Create audio input transcription configuration
AudioInputTranscriptionOptions transcriptionOptions = new AudioInputTranscriptionOptions(AudioInputTranscriptionOptionsModel.WHISPER_1);
VoiceLiveSessionOptions options = new VoiceLiveSessionOptions()
.setInstructions(config.instructions)
// Voice: AzureStandardVoice for Azure TTS voices (e.g., en-US-Ava:DragonHDLatestNeural)
.setVoice(BinaryData.fromObject(new AzureStandardVoice(config.voice)))
.setModalities(Arrays.asList(InteractionModality.TEXT, InteractionModality.AUDIO))
.setInputAudioFormat(InputAudioFormat.PCM16)
.setOutputAudioFormat(OutputAudioFormat.PCM16)
.setInputAudioSamplingRate(SAMPLE_RATE)
.setInputAudioNoiseReduction(new AudioNoiseReduction(AudioNoiseReductionType.NEAR_FIELD))
.setInputAudioEchoCancellation(new AudioEchoCancellation())
.setInputAudioTranscription(transcriptionOptions)
.setTurnDetection(turnDetection);
System.out.println("✓ Session configuration created");
return options;
}
/**
* Handle incoming server events
*/
private static void handleServerEvent(SessionUpdate event, AudioProcessor audioProcessor) {
ServerEventType eventType = event.getType();
try {
if (eventType == ServerEventType.SESSION_CREATED) {
System.out.println("✓ Session created - initializing...");
} else if (eventType == ServerEventType.SESSION_UPDATED) {
System.out.println("✓ Session updated - starting microphone");
// Now that bufferObject() bug is fixed in generated code, we can access the typed class
if (event instanceof SessionUpdateSessionUpdated) {
SessionUpdateSessionUpdated sessionUpdated = (SessionUpdateSessionUpdated) event;
// Print the full JSON representation
System.out.println("📄 Session Updated Event (Full JSON):");
String eventJson = BinaryData.fromObject(sessionUpdated).toString();
System.out.println(eventJson);
}
audioProcessor.startCapture();
} else if (eventType == ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STARTED) {
System.out.println("🎤 Speech detected");
// Server handles interruption automatically with interruptResponse=true
// Just clear any pending audio in the playback queue
audioProcessor.skipPendingAudio();
} else if (eventType == ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STOPPED) {
System.out.println("🤔 Speech ended - processing...");
} else if (eventType == ServerEventType.RESPONSE_AUDIO_DELTA) {
// Handle audio response - extract and queue for playback
if (event instanceof SessionUpdateResponseAudioDelta) {
SessionUpdateResponseAudioDelta audioEvent = (SessionUpdateResponseAudioDelta) event;
byte[] audioData = audioEvent.getDelta();
if (audioData != null && audioData.length > 0) {
audioProcessor.queueAudio(audioData);
}
}
} else if (eventType == ServerEventType.RESPONSE_AUDIO_DONE) {
System.out.println("🎤 Ready for next input...");
} else if (eventType == ServerEventType.RESPONSE_DONE) {
System.out.println("✅ Response complete");
} else if (eventType == ServerEventType.ERROR) {
if (event instanceof SessionUpdateError) {
SessionUpdateError errorEvent = (SessionUpdateError) event;
System.out.println("❌ VoiceLive error: " + errorEvent.getError().getMessage());
} else {
System.out.println("❌ VoiceLive error occurred");
}
}
} catch (Exception e) {
System.err.println("❌ Error handling event: " + e.getMessage());
e.printStackTrace();
}
}
}
API голосовой трансляции начинает возвращать звук с первоначальным ответом модели. Вы можете прервать модель, выступая. Введите ctrl+C, чтобы выйти из беседы.
Выходные данные
Выходные данные приложения печатаются в консоли. Отображаются сообщения, указывающие состояние системы:
[INFO] Scanning for projects...
[INFO]
[INFO] --------------< com.azure.ai.voicelive:model-quickstart >---------------
[INFO] Building Azure VoiceLive Model Quickstart 1.0.0
[INFO] from pom.xml
[INFO] --------------------------------[ jar ]---------------------------------
[INFO]
[INFO] --- exec:3.1.0:java (default-cli) @ model-quickstart ---
? Loaded configuration from application.properties
? Audio system check passed
?? Starting Voice Assistant...
Model: gpt-realtime
Voice: en-US-Ava:DragonHDLatestNeural
? Using API Key authentication
? Initializing VoiceLive client:
Endpoint: https://jagoerge-voicelive-weu-resource.services.ai.azure.com/
? VoiceLive client created
? Creating session configuration:
? Session configuration created
[ModelQuickstart.main()] INFO com.azure.ai.voicelive.VoiceLiveSessionAsyncClient - WebSocket connection parameters -> endpoint: wss://my-resource.services.ai.azure.com/voice-live/realtime?api-version=2025-10-01&model=gpt-realtime headers: api-key=0XxX...x0xX
[reactor-http-nio-2] INFO com.azure.ai.voicelive.VoiceLiveSessionAsyncClient - WebSocket connection established
[reactor-http-nio-2] INFO com.azure.ai.voicelive.VoiceLiveSessionAsyncClient - Receive flux subscribed
[reactor-http-nio-2] INFO com.azure.ai.voicelive.VoiceLiveSessionAsyncClient - Send stream subscribed
[reactor-http-nio-2] INFO com.azure.ai.voicelive.VoiceLiveSessionAsyncClient - WebSocket session ready
? Session started successfully
? Subscribed to event stream
? Sending session.update configuration...
? Session configuration sent
? Audio playback started
? VOICE ASSISTANT READY
Start speaking to begin conversation
Press Ctrl+C to exit
? Session created - initializing...
? Session updated - starting microphone
? Session Updated Event (Full JSON):
{"event_id":"event_7VOMH1ALSp5A0Fa17nSZKM","session":{"model":"gpt-realtime","modalities":["audio","text"],"voice":{"name":"en-US-Ava:DragonHDLatestNeural","type":"azure-standard"},"instructions":"You are a helpful AI voice assistant. Respond naturally and conversationally. Keep your responses concise but engaging. Speak as if having a real conversation.","input_audio_sampling_rate":24000,"input_audio_format":"pcm16","output_audio_format":"pcm16","turn_detection":{"type":"server_vad","threshold":0.5,"prefix_padding_ms":300,"silence_duration_ms":500,"auto_truncate":true,"create_response":true,"interrupt_response":true},"input_audio_noise_reduction":{"type":"near_field"},"input_audio_echo_cancellation":{"type":"server_echo_cancellation"},"input_audio_transcription":{"model":"azure-speech","language":""},"tools":[],"tool_choice":"auto","temperature":0.8,"max_response_output_tokens":"inf","id":"sess_7cMSK58ShfrUY1RKnZ6Eoy"},"type":"session.updated"}
? Microphone capture started
? Audio capture loop started
? Speech detected
? Speech ended - processing...
? Ready for next input...
? Response complete
? Speech detected
? Speech ended - processing...
? Ready for next input...
? Response complete
? Speech detected
? Speech ended - processing...
? Ready for next input...
? Speech detected
? Response complete
? Speech ended - processing...
? Shutting down gracefully...
? Audio capture loop ended
? Microphone capture stopped
? Audio playback stopped
Конфигурация ведения журнала
В примере используется SLF4J для ведения журнала. По умолчанию для уровня ведения журнала задано значение INFO. Ведение журнала можно настроить, создав simplelogger.properties файл в корневом каталоге проекта (в той же папке, что и pom.xml):
# SLF4J Simple Logger Configuration
org.slf4j.simpleLogger.defaultLogLevel=info
org.slf4j.simpleLogger.showDateTime=true
org.slf4j.simpleLogger.dateTimeFormat=yyyy-MM-dd HH:mm:ss:SSS
# Set log level for VoiceLive SDK
org.slf4j.simpleLogger.log.com.azure.ai.voicelive=debug
# Set log level for Azure Core
org.slf4j.simpleLogger.log.com.azure.core=info
Чтобы включить ведение журнала отладки, измените уровень журнала на debug:
org.slf4j.simpleLogger.defaultLogLevel=debug
Очистите ресурсы
Закончив работу с руководством по быстрому старту, вы можете удалить созданные ресурсы:
rm -rf voice-live-quickstart
Связанный контент
- Попробуйте Краткое руководство по голосовым живым агентам
- Дополнительные сведения об использовании API голосовой трансляции
- См. справочник по API трансляции голосовой связи