Поделиться через


measure Агрегатная функция

Применяется к:отмечено да Databricks SQL отмечено да Databricks Runtime 16.4 и более поздние версии

Возвращает measure_column, полученное из агрегированных значений группы.

В отличие от обычной статистической функции, например SUM, AVGили COUNT, MEASURE функция не указывает агрегирование. Он наследует определение агрегата из определения представления метрик.

Использование метрического представления с мерами превосходит обычные представления, так как оно абстрагирует сложность базовых агрегатов, предоставляя пользователю свободу выбора столбцов группировки.

Синтаксис

measure ( measure_column )

Эту функцию нельзя вызвать как функцию окна с помощью OVER предложения.

Аргументы

  • measure_column: ссылка на столбец мер в представлении метрик.

Возвраты

Значение типа measure_column.

Примеры

-- A metric view with a measure column 4 metric columns
CREATE OR REPLACE VIEW region_sales_metrics
  (month COMMENT 'Month order was made',
   status,
   order_priority,
   count_orders COMMENT 'Count of orders',
   total_Revenue,
   total_Revenue_p_Customer,
   total_revenue_for_open_orders)
  WITH METRICS
  LANGUAGE YAML
  COMMENT 'A metric view for regional sales metrics.'
  AS $$
   version: 0.1
   source: samples.tpch.orders
   filter: o_orderdate > '1990-01-01'
   dimensions:
   - name: month
     expr: date_trunc('MONTH', o_orderdate)
   - name: status
     expr: case
       when o_orderstatus = 'O' then 'Open'
       when o_orderstatus = 'P' then 'Processing'
       when o_orderstatus = 'F' then 'Fulfilled'
       end
   - name: order_priority
     expr: split(o_orderpriority, '-')[1]
   measures:
   - name: count_orders
     expr: count(1)
   - name: total_revenue
     expr: SUM(o_totalprice)
   - name: total_revenue_per_customer
     expr: SUM(o_totalprice) / count(distinct o_custkey)
   - name: total_revenue_for_open_orders
     expr: SUM(o_totalprice) filter (where o_orderstatus='O')
  $$;

-- Tracking total_revenue_per_customer by month in 1995
> SELECT extract(month from month) as month,
    measure(total_revenue_per_customer)::bigint AS total_revenue_per_customer
  FROM region_sales_metrics
  WHERE extract(year FROM month) = 1995
  GROUP BY ALL
  ORDER BY ALL;
  month	 total_revenue_per_customer
  -----  --------------------------
   1     167727
   2     166237
   3     167349
   4     167604
   5     166483
   6     167402
   7     167272
   8     167435
   9     166633
  10     167441
  11     167286
  12     167542

-- Tracking total_revenue_per_customer by month and status in 1995
> SELECT extract(month from month) as month,
    status,
    measure(total_revenue_per_customer)::bigint AS total_revenue_per_customer
  FROM region_sales_metrics
  WHERE extract(year FROM month) = 1995
  GROUP BY ALL
  ORDER BY ALL;
  month  status      total_revenue_per_customer
  -----  ---------   --------------------------
   1     Fulfilled   167727
   2     Fulfilled   161720
   2    Open          40203
   2    Processing   193412
   3    Fulfilled    121816
   3    Open          52424
   3    Processing   196304
   4    Fulfilled     80405
   4    Open          75630
   4    Processing   196136
   5    Fulfilled     53460
   5    Open         115344
   5    Processing   196147
   6    Fulfilled     42479
   6    Open         160390
   6    Processing   193461
   7    Open         167272
   8    Open         167435
   9    Open         166633
   10   Open         167441
   11   Open         167286
   12   Open         167542