ManyModelsInferenceParameters Class
Parameters used for ManyModels inference pipeline.
- Inheritance
-
azureml.train.automl.runtime._solution_accelorators.data_models.pipeline_parameters.InferencePipelineParametersManyModelsInferenceParameters
Constructor
ManyModelsInferenceParameters(partition_column_names: str, time_column_name: str | None = None, target_column_name: str | None = None, inference_type: str | None = None, forecast_mode: str = 'recursive', step: int = 1, forecast_quantiles: float | List[float] | None = None)
Parameters
Name | Description |
---|---|
partition_column_names
Required
|
The names of columns used to group your models. For timeseries, the groups must not split up individual time-series. That is, each group must contain one or more whole time-series. |
time_column_name
|
Time column name only if the inference dataset is a timeseries. Default value: None
|
target_column_name
|
Target column name only if the inference dataset has the target column. Default value: None
|
inference_type
|
Which inference method to use on the model. Possible values are 'forecast', 'predict_proba', and 'predict'. Default value: None
|
forecast_mode
|
The type of forecast to be used, either 'rolling' or 'recursive', defaults to 'recursive'. Default value: recursive
|
step
|
Number of periods to advance the forecasting window in each iteration (for rolling forecast only), defaults to 1. Default value: 1
|
forecast_quantiles
|
Optional list of quantiles to get forecasts for. Default value: None
|
Methods
validate |
Validates the supplied parameters. |
validate
Validates the supplied parameters.
validate()