ModelProxy Class
Note
This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Proxy object for AutoML models that enables inference on remote compute.
Create an AutoML ModelProxy object to submit inference to the training environment.
- Inheritance
-
builtins.objectModelProxy
Constructor
ModelProxy(child_run, compute_target=None)
Parameters
Name | Description |
---|---|
child_run
Required
|
The child run from which the model will be downloaded. |
compute_target
Required
|
Overwrite for the target compute to inference on. |
Methods
forecast |
Submit a job to run forecast on the model for the given values. |
forecast_quantiles |
Submit a job to run forecast_quantiles on the model for the given values. |
predict |
Submit a job to run predict on the model for the given values. |
predict_proba |
Submit a job to run predict_proba on the model for the given values. |
test |
Retrieve predictions from the |
forecast
Submit a job to run forecast on the model for the given values.
forecast(X_values: Any, y_values: Any | None = None) -> Tuple[AbstractDataset, AbstractDataset]
Parameters
Name | Description |
---|---|
X_values
Required
|
Input test data to run forecast on. |
y_values
|
Input y values to run the forecast on. Default value: None
|
Returns
Type | Description |
---|---|
The forecast values. |
forecast_quantiles
Submit a job to run forecast_quantiles on the model for the given values.
forecast_quantiles(X_values: Any, y_values: Any | None = None, forecast_destination: Any | None = None, ignore_data_errors: bool = False) -> AbstractDataset
Parameters
Name | Description |
---|---|
X_values
Required
|
Input test data to run forecast on. |
y_values
|
Input y values to run the forecast on. Default value: None
|
forecast_destination
|
<xref:pandas.Timestamp>
Forecast_destination: a time-stamp value. Forecasts will be made all the way to the forecast_destination time, for all grains. Dictionary input { grain -> timestamp } will not be accepted. If forecast_destination is not given, it will be imputed as the last time occurring in X_pred for every grain. Default value: None
|
ignore_data_errors
|
Ignore errors in user data. Default value: False
|
predict
Submit a job to run predict on the model for the given values.
predict(values: Any) -> AbstractDataset
Parameters
Name | Description |
---|---|
values
Required
|
Input test data to run predict on. |
Returns
Type | Description |
---|---|
The predicted values. |
predict_proba
Submit a job to run predict_proba on the model for the given values.
predict_proba(values: Any) -> AbstractDataset
Parameters
Name | Description |
---|---|
values
Required
|
Input test data to run predict on. |
Returns
Type | Description |
---|---|
The predicted values. |
test
Retrieve predictions from the test_data
and compute relevant metrics.
test(test_data: AbstractDataset, include_predictions_only: bool = False) -> Tuple[AbstractDataset, Dict[str, Any]]
Parameters
Name | Description |
---|---|
test_data
Required
|
The test dataset. |
include_predictions_only
|
Whether or not to only include the predictions as part of the predictions.csv output. If this parameter is
else (default):
The The The The If the Default value: False
|
Returns
Type | Description |
---|---|
A tuple containing the predicted values and the metrics. |