NoaaGfsWeather Class
Represents the National Oceanic and Atmospheric Administration (NOAA) Global Forecast System (GFS) dataset.
This dataset contains 15-day US hourly weather forecast data (example: temperature, precipitation, wind) produced by the Global Forecast System (GFS) from the National Oceanic and Atmospheric Administration (NOAA). For information about this dataset, including column descriptions, different ways to access the dataset, and examples, see NOAA Global Forecast System in the Microsoft Azure Open Datasets catalog.
Initialize filtering fields.
- Inheritance
-
NoaaGfsWeather
Constructor
NoaaGfsWeather(start_date: datetime = datetime.datetime(2018, 1, 1, 0, 0), end_date: datetime = datetime.datetime(2018, 1, 1, 0, 0), cols: List[str] | None = None, limit: int | None = -1, enable_telemetry: bool = True)
Parameters
Name | Description |
---|---|
start_date
|
The date at which to start loading data, inclusive. If None, the Default value: 2018-01-01 00:00:00
|
end_date
|
The date at which to end loading data, inclusive. If None, the Default value: 2018-01-01 00:00:00
|
cols
|
A list of columns names to load from the dataset. If None, all columns are loaded. For information on the available columns in this dataset, see NOAA Global Forecast System. Default value: None
|
limit
|
A value indicating the number of days of data to load with Default value: -1
|
enable_telemetry
|
Whether to enable telemetry on this dataset. Default value: True
|
start_date
Required
|
The start date you'd like to query inclusively. |
end_date
Required
|
The end date you'd like to query inclusively. |
cols
Required
|
A list of column names you'd like to retrieve. None will get all columns. |
limit
Required
|
to_pandas_dataframe() will load only "limit" days of data. -1 means no limit. |
enable_telemetry
Required
|
Indicates whether to send telemetry. |
Remarks
The example below shows how to use access the dataset.
from azureml.opendatasets import NoaaGfsWeather
from datetime import datetime
from dateutil.relativedelta import relativedelta
end_date = datetime.today()
start_date = datetime.today() - relativedelta(months=1)
gfs = NoaaGfsWeather(start_date=start_date, end_date=end_date)
gfs_df = gfs.to_pandas_dataframe()
Methods
filter |
Filter time. |
filter
Filter time.
filter(env: RuntimeEnv, min_date: datetime, max_date: datetime)
Parameters
Name | Description |
---|---|
env
Required
|
<xref:azureml.opendatasets.RuntimeEnv>
The runtime environment. |
min_date
Required
|
The min date. |
max_date
Required
|
The max date. |
Returns
Type | Description |
---|---|
filtered data frame. |
Attributes
default_end_date
default_end_date = datetime.datetime(2024, 10, 18, 0, 0)
default_start_date
default_start_date = datetime.datetime(2018, 1, 1, 0, 0)
id_column_name
id_column_name = 'ID'
latitude_column_name
latitude_column_name = 'latitude'
longitude_column_name
longitude_column_name = 'longitude'