RandomSamplingAlgorithm Class
Random Sampling Algorithm.
- Inheritance
-
azure.ai.ml.entities._job.sweep.sampling_algorithm.SamplingAlgorithmRandomSamplingAlgorithm
Constructor
RandomSamplingAlgorithm(*, rule: str | None = None, seed: int | None = None, logbase: float | str | None = None)
Keyword-Only Parameters
Name | Description |
---|---|
rule
|
The specific type of random algorithm. Accepted values are: "random" and "sobol". |
seed
|
The seed for random number generation. |
logbase
|
A positive number or the number "e" in string format to be used as the base for log based random sampling. |
Examples
Assigning a random sampling algorithm for a SweepJob
from azure.ai.ml.entities import CommandJob
from azure.ai.ml.sweep import RandomSamplingAlgorithm, SweepJob, SweepJobLimits
command_job = CommandJob(
inputs=dict(kernel="linear", penalty=1.0),
compute=cpu_cluster,
environment=f"{job_env.name}:{job_env.version}",
code="./scripts",
command="python scripts/train.py --kernel $kernel --penalty $penalty",
experiment_name="sklearn-iris-flowers",
)
sweep = SweepJob(
sampling_algorithm=RandomSamplingAlgorithm(seed=999, rule="sobol", logbase="e"),
trial=command_job,
search_space={"ss": Choice(type="choice", values=[{"space1": True}, {"space2": True}])},
inputs={"input1": {"file": "top_level.csv", "mode": "ro_mount"}},
compute="top_level",
limits=SweepJobLimits(trial_timeout=600),
)
Collaborate with us on GitHub
The source for this content can be found on GitHub, where you can also create and review issues and pull requests. For more information, see our contributor guide.
Azure SDK for Python