FeatureSetOperations Class
FeatureSetOperations.
You should not instantiate this class directly. Instead, you should create an MLClient instance that instantiates it for you and attaches it as an attribute.
- Inheritance
-
azure.ai.ml._scope_dependent_operations._ScopeDependentOperationsFeatureSetOperations
Constructor
FeatureSetOperations(operation_scope: OperationScope, operation_config: OperationConfig, service_client: AzureMachineLearningServices, service_client_for_jobs: AzureMachineLearningWorkspaces, datastore_operations: DatastoreOperations, **kwargs: Dict)
Parameters
Name | Description |
---|---|
operation_scope
Required
|
|
operation_config
Required
|
|
service_client
Required
|
|
service_client_for_jobs
Required
|
|
datastore_operations
Required
|
|
Methods
archive |
Archive a FeatureSet asset. |
begin_backfill |
Backfill. |
begin_create_or_update |
Create or update FeatureSet |
get |
Get the specified FeatureSet asset. |
get_feature |
Get Feature |
list |
List the FeatureSet assets of the workspace. |
list_features |
List features |
list_materialization_operations |
List Materialization operation. |
restore |
Restore an archived FeatureSet asset. |
archive
Archive a FeatureSet asset.
archive(name: str, version: str, **kwargs: Dict) -> None
Parameters
Name | Description |
---|---|
name
Required
|
Name of FeatureSet asset. |
version
Required
|
Version of FeatureSet asset. |
Returns
Type | Description |
---|---|
None |
begin_backfill
Backfill.
begin_backfill(*, name: str, version: str, feature_window_start_time: datetime | None = None, feature_window_end_time: datetime | None = None, display_name: str | None = None, description: str | None = None, tags: Dict[str, str] | None = None, compute_resource: MaterializationComputeResource | None = None, spark_configuration: Dict[str, str] | None = None, data_status: List[str | DataAvailabilityStatus] | None = None, job_id: str | None = None, **kwargs: Dict) -> LROPoller[FeatureSetBackfillMetadata]
Keyword-Only Parameters
Name | Description |
---|---|
name
|
Feature set name. This is case-sensitive. |
version
|
Version identifier. This is case-sensitive. |
feature_window_start_time
|
Start time of the feature window to be materialized. |
feature_window_end_time
|
End time of the feature window to be materialized. |
display_name
|
Specifies description. |
description
|
Specifies description. |
tags
|
A set of tags. Specifies the tags. |
compute_resource
|
Specifies the compute resource settings. |
spark_configuration
|
Specifies the spark compute settings. |
data_status
|
Specifies the data status that you want to backfill. |
job_id
|
The job id. |
Returns
Type | Description |
---|---|
An instance of LROPoller that returns ~azure.ai.ml.entities.FeatureSetBackfillMetadata |
begin_create_or_update
Create or update FeatureSet
begin_create_or_update(featureset: FeatureSet, **kwargs: Dict) -> LROPoller[FeatureSet]
Parameters
Name | Description |
---|---|
featureset
Required
|
FeatureSet definition. |
Returns
Type | Description |
---|---|
An instance of LROPoller that returns a FeatureSet. |
get
Get the specified FeatureSet asset.
get(name: str, version: str, **kwargs: Dict) -> FeatureSet
Parameters
Name | Description |
---|---|
name
Required
|
Name of FeatureSet asset. |
version
Required
|
Version of FeatureSet asset. |
Returns
Type | Description |
---|---|
FeatureSet asset object. |
Exceptions
Type | Description |
---|---|
Raised if FeatureSet cannot be successfully identified and retrieved. Details will be provided in the error message. |
|
Raised if the corresponding name and version cannot be retrieved from the service. |
get_feature
Get Feature
get_feature(feature_set_name: str, version: str, *, feature_name: str, **kwargs: Dict) -> Feature | None
Parameters
Name | Description |
---|---|
feature_set_name
Required
|
Feature set name. |
version
Required
|
Feature set version. |
Keyword-Only Parameters
Name | Description |
---|---|
feature_name
|
The feature name. This argument is case-sensitive. |
tags
|
String representation of a comma-separated list of tag names, and optionally, values. For example, "tag1,tag2=value2". If provided, only features matching the specified tags are returned. |
Returns
Type | Description |
---|---|
Feature object |
list
List the FeatureSet assets of the workspace.
list(name: str | None = None, *, list_view_type: ListViewType = ListViewType.ACTIVE_ONLY, **kwargs: Dict) -> ItemPaged[FeatureSet]
Parameters
Name | Description |
---|---|
name
Required
|
Name of a specific FeatureSet asset, optional. |
Keyword-Only Parameters
Name | Description |
---|---|
list_view_type
|
View type for including/excluding (for example) archived FeatureSet assets. Defaults to ACTIVE_ONLY. |
Returns
Type | Description |
---|---|
An iterator like instance of FeatureSet objects |
list_features
List features
list_features(feature_set_name: str, version: str, *, feature_name: str | None = None, description: str | None = None, tags: str | None = None, **kwargs: Dict) -> ItemPaged[Feature]
Parameters
Name | Description |
---|---|
feature_set_name
Required
|
Feature set name. |
version
Required
|
Feature set version. |
Keyword-Only Parameters
Name | Description |
---|---|
feature_name
|
feature name. |
description
|
Description of the featureset. |
tags
|
Comma-separated list of tag names (and optionally values). Example: tag1,tag2=value2. |
Returns
Type | Description |
---|---|
An iterator like instance of Feature objects |
list_materialization_operations
List Materialization operation.
list_materialization_operations(name: str, version: str, *, feature_window_start_time: str | datetime | None = None, feature_window_end_time: str | datetime | None = None, filters: str | None = None, **kwargs: Dict) -> ItemPaged[FeatureSetMaterializationMetadata]
Parameters
Name | Description |
---|---|
name
Required
|
Feature set name. |
version
Required
|
Feature set version. |
Keyword-Only Parameters
Name | Description |
---|---|
feature_window_start_time
|
Start time of the feature window to filter materialization jobs. |
feature_window_end_time
|
End time of the feature window to filter materialization jobs. |
filters
|
Comma-separated list of tag names (and optionally values). Example: tag1,tag2=value2. |
Returns
Type | Description |
---|---|
An iterator like instance of ~azure.ai.ml.entities.FeatureSetMaterializationMetadata objects |
restore
Azure SDK for Python