ComponentOperations Class
ComponentOperations.
You should not instantiate this class directly. Instead, you should create an MLClient instance that instantiates it for you and attaches it as an attribute.
- Inheritance
-
azure.ai.ml._scope_dependent_operations._ScopeDependentOperationsComponentOperations
Constructor
ComponentOperations(operation_scope: OperationScope, operation_config: OperationConfig, service_client: AzureMachineLearningWorkspaces | AzureMachineLearningWorkspaces, all_operations: OperationsContainer, preflight_operation: DeploymentsOperations | None = None, **kwargs: Dict)
Parameters
Name | Description |
---|---|
operation_scope
Required
|
<xref:azure.ai.ml._scope_dependent_operations.OperationScope>
The operation scope. |
operation_config
Required
|
<xref:azure.ai.ml._scope_dependent_operations.OperationConfig>
The operation configuration. |
service_client
Required
|
Union[ <xref:azure.ai.ml._restclient.v2022_10_01.AzureMachineLearningWorkspaces>, <xref:azure.ai.ml._restclient.v2021_10_01_dataplanepreview.AzureMachineLearningWorkspaces>]
The service client for API operations. |
all_operations
Required
|
<xref:azure.ai.ml._scope_dependent_operations.OperationsContainer>
The container for all available operations. |
preflight_operation
|
Optional[<xref:azure.ai.ml._vendor.azure_resources.operations.DeploymentsOperations>]
The preflight operation for deployments. Default value: None
|
kwargs
Required
|
Additional keyword arguments. |
Methods
archive |
Archive a component. |
create_or_update |
Create or update a specified component. if there're inline defined entities, e.g. Environment, Code, they'll be created together with the component. |
download |
Note This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information. Download the specified component and its dependencies to local. Local component can be used to create the component in another workspace or for offline development. |
get |
Returns information about the specified component. |
list |
List specific component or components of the workspace. |
restore |
Restore an archived component. |
validate |
Note This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information. validate a specified component. if there are inline defined entities, e.g. Environment, Code, they won't be created. |
archive
Archive a component.
archive(name: str, version: str | None = None, label: str | None = None, **kwargs: Any) -> None
Parameters
Name | Description |
---|---|
name
Required
|
Name of the component. |
version
Required
|
Version of the component. |
label
Required
|
Label of the component. (mutually exclusive with version). |
Examples
Archive component example.
ml_client.components.archive(name=component_example.name)
create_or_update
Create or update a specified component. if there're inline defined entities, e.g. Environment, Code, they'll be created together with the component.
create_or_update(component: Component, version: str | None = None, *, skip_validation: bool = False, **kwargs: Any) -> Component
Parameters
Name | Description |
---|---|
component
Required
|
The component object or a mldesigner component function that generates component object |
version
Required
|
The component version to override. |
Keyword-Only Parameters
Name | Description |
---|---|
skip_validation
|
whether to skip validation before creating/updating the component, defaults to False |
Returns
Type | Description |
---|---|
The specified component object. |
Exceptions
Type | Description |
---|---|
Raised if Component cannot be successfully validated. Details will be provided in the error message. |
|
Raised if Component assets (e.g. Data, Code, Model, Environment) cannot be successfully validated. Details will be provided in the error message. |
|
Raised if Component type is unsupported. Details will be provided in the error message. |
|
Raised if Component model cannot be successfully validated. Details will be provided in the error message. |
|
Raised if local path provided points to an empty directory. |
Examples
Create component example.
from azure.ai.ml import load_component
from azure.ai.ml.entities._component.component import Component
component_example = load_component(
source="./sdk/ml/azure-ai-ml/tests/test_configs/components/helloworld_component.yml",
params_override=[{"version": "1.0.2"}],
)
component = ml_client.components.create_or_update(component_example)
download
Note
This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Download the specified component and its dependencies to local. Local component can be used to create the component in another workspace or for offline development.
download(name: str, download_path: PathLike | str = '.', *, version: str | None = None) -> None
Parameters
Name | Description |
---|---|
name
Required
|
Name of the code component. |
download_path
Required
|
Local path as download destination, defaults to current working directory of the current user. Will be created if not exists. |
Keyword-Only Parameters
Name | Description |
---|---|
version
|
Version of the component. |
Returns
Type | Description |
---|---|
The specified component object. |
Exceptions
Type | Description |
---|---|
Raised if download_path is pointing to an existing directory that is not empty. identified and retrieved. Details will be provided in the error message. |
get
Returns information about the specified component.
get(name: str, version: str | None = None, label: str | None = None) -> Component
Parameters
Name | Description |
---|---|
name
Required
|
Name of the code component. |
version
Required
|
Version of the component. |
label
Required
|
Label of the component, mutually exclusive with version. |
Returns
Type | Description |
---|---|
The specified component object. |
Exceptions
Type | Description |
---|---|
Raised if Component cannot be successfully identified and retrieved. Details will be provided in the error message. |
Examples
Get component example.
ml_client.components.get(name=component_example.name, version="1.0.2")
list
List specific component or components of the workspace.
list(name: str | None = None, *, list_view_type: ListViewType = ListViewType.ACTIVE_ONLY) -> Iterable[Component]
Parameters
Name | Description |
---|---|
name
Required
|
Component name, if not set, list all components of the workspace |
Keyword-Only Parameters
Name | Description |
---|---|
list_view_type
|
View type for including/excluding (for example) archived components. Default: ACTIVE_ONLY. |
Returns
Type | Description |
---|---|
An iterator like instance of component objects |
Examples
List component example.
print(ml_client.components.list())
restore
Restore an archived component.
restore(name: str, version: str | None = None, label: str | None = None, **kwargs: Any) -> None
Parameters
Name | Description |
---|---|
name
Required
|
Name of the component. |
version
Required
|
Version of the component. |
label
Required
|
Label of the component. (mutually exclusive with version). |
Examples
Restore component example.
ml_client.components.restore(name=component_example.name)
validate
Note
This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
validate a specified component. if there are inline defined entities, e.g. Environment, Code, they won't be created.
validate(component: Component | function, raise_on_failure: bool = False, **kwargs: Any) -> ValidationResult
Parameters
Name | Description |
---|---|
component
Required
|
The component object or a mldesigner component function that generates component object |
raise_on_failure
Required
|
Whether to raise exception on validation error. Defaults to False |
Returns
Type | Description |
---|---|
All validation errors |
Azure SDK for Python