Seattle Safety Data
Seattle Fire Department 911 dispatches.
Note
Microsoft provides Azure Open Datasets on an “as is” basis. Microsoft makes no warranties, express or implied, guarantees or conditions with respect to your use of the datasets. To the extent permitted under your local law, Microsoft disclaims all liability for any damages or losses, including direct, consequential, special, indirect, incidental or punitive, resulting from your use of the datasets.
This dataset is provided under the original terms that Microsoft received source data. The dataset may include data sourced from Microsoft.
Volume and retention
This dataset is stored in Parquet format. It's updated daily, and contains about 800,000 rows (20 MB) in 2019.
This dataset contains historical records accumulated from 2010 to the present. You can use parameter settings in our SDK to fetch data within a specific time range.
Storage location
This dataset is stored in the East US Azure region. We recommend locating compute resources in East US for affinity.
Additional information
This dataset is sourced from city of Seattle government. For more information, see the city of Seattle website. View the Licensing and Attribution for the terms of using this dataset. Email [email protected] if you have any questions about the data source.
Columns
Name | Data type | Unique | Values (sample) | Description |
---|---|---|---|---|
address | string | 196,965 | 517 3rd Av 318 2nd Av Et S | Location of Incident. |
category | string | 232 | Aid Response Medic Response | Response Type. |
dataSubtype | string | 1 | 911_Fire | “911_Fire” |
dataType | string | 1 | Safety | “Safety” |
dateTime | timestamp | 1,533,401 | 2020-11-04 06:49:00 2019-06-19 13:49:00 | The date and time of the call. |
latitude | double | 94,332 | 47.602172 47.600194 | This is the latitude value. Lines of latitude are parallel to the equator. |
longitude | double | 79,492 | -122.330863 -122.330541 | This is the longitude value. Lines of longitude run perpendicular to lines of latitude, and all pass through both poles. |
Preview
dataType | dataSubtype | dateTime | category | subcategory | status | address | latitude | longitude | source | extendedProperties |
---|---|---|---|---|---|---|---|---|---|---|
Safety | 911_Fire | 4/28/2021 5:22:00 AM | Rubbish Fire | null | null | 200 University St | 47.607299 | -122.337087 | null | |
Safety | 911_Fire | 4/28/2021 5:15:00 AM | Triaged Incident | null | null | 6th Ave / Olive Way | 47.61313 | -122.336282 | null | |
Safety | 911_Fire | 4/28/2021 5:12:00 AM | Aid Response | null | null | 4th Ave S / Seattle Blvd S | 47.596486 | -122.329046 | null | |
Safety | 911_Fire | 4/28/2021 5:09:00 AM | Rubbish Fire | null | null | 3rd Ave / University St | 47.607763 | -122.335976 | null | |
Safety | 911_Fire | 4/28/2021 4:57:00 AM | Low Acuity Response | null | null | 533 3rd Ave W | 47.623717 | -122.360635 | null | |
Safety | 911_Fire | 4/28/2021 4:57:00 AM | Trans to AMR | null | null | 4638 S Austin St | 47.534702 | -122.274812 | null | |
Safety | 911_Fire | 4/28/2021 4:55:00 AM | Triaged Incident | null | null | 8th Ave N / Harrison St | 47.622051 | -122.341066 | null |
Data access
Azure Notebooks
# This is a package in preview.
from azureml.opendatasets import SeattleSafety
from datetime import datetime
from dateutil import parser
end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_pandas_dataframe()
safety.info()
Azure Databricks
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://learn.microsoft.com/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import SeattleSafety
from datetime import datetime
from dateutil import parser
end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
display(safety.limit(5))
Azure Synapse
# This is a package in preview.
from azureml.opendatasets import SeattleSafety
from datetime import datetime
from dateutil import parser
end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
# Display top 5 rows
display(safety.limit(5))
Examples
- See the City Safety Analytics example on GitHub.
Next steps
View the rest of the datasets in the Open Datasets catalog.