Switching to Databricks Repos from
Legacy Git integration

Databricks Repos effectively behave as embedded Git clients in your workspace. Unlike the
legacy Git integration, which only works on a per-notebook level, Databricks Repos allows you
to perform Git operations for multiple notebooks and files with the same Git connection. The
legacy Git integration has been in legacy status for over two years, and the deprecation notice
has been displayed in the Ul since Nov 3rd, 2023.

Git Preferences

This legacy Git integration will be removed on January 31st, 2024.

Instead, please use the Repos Git integration for repository-level Git

integration such as cloning repos, managing branches pushing and

pulling changes, and visual diffing. Le re

If your workspace does not have Repos enabled, please use our IDE

integration to author code with source control. arn 1 bout ID
ration.

To hide these alerts, unlink this notebook from Git below.
Status @ Link Unlink

Link | https://github.com/luciano-urgal/public-repo
Branch | master > A

Path in Git Repo | notebooks/Users/luciano.urgal@databricks.com/Notebo

Tip: You can also /mpofr/exporr multiple notebooks or an entire folder
through W [| to your computer and check-in to your favorite
version contro/ Sysrem

Close Save

To set up a Databricks Repo:

1. Get the Git URL and provider from your existing legacy Git integration.
2. Clone the remote repo: This step will automatically use the same credentials you
configured for the legacy Git integration.
a. Optionally, if you have a large remote repo and only need a subset of directories,
you can use the sparse checkout mode to limit the directories you clone.
3. Voila! You now have notebooks connected to your remote repository via Databricks
Repos.

You can find information on committing changes, pulling changes, and doing other Git
operations with Repos in our documentation. To preserve uncommitted changes in a notebook
e Clone the remote repo with this notebook into a Databricks Repo
e Move this notebook to the repo into the same location to replace the old version
e Commit and push

https://docs.databricks.com/en/repos/git-version-control-legacy.html#work-with-notebook-versions
https://docs.databricks.com/en/repos/git-operations-with-repos.html#clone-a-repo-connected-to-a-remote-repo
https://docs.databricks.com/en/repos/git-operations-with-repos.html#configure-sparse-checkout-mode
https://docs.databricks.com/en/repos/git-operations-with-repos.html#run-git-operations-on-databricks-repos

As a best practice, make team collaboration more effective by creating a Databricks Repo for
each user that integrates with the same Git repository. If each user works in their own
development branch, each user should also set up and use their own Repo pointing to that
branch. Although multiple users can edit contents in a Repo, only one designated user should
perform Git operations (such as pull, push, commit, and branch switching) for that Repo.
Databricks strongly recommends against multiple users performing Git operations in the same
Repo as this can result in errors and inconsistent results.

After creating a new Databricks Repo, update any Workflows, dbutils.notebook. run,
$run, or other references that refer to the notebooks by workspace paths.
e Notebook references: Search for the notebook path and name via the global search bar

Q Search data, notebooks, recents, and more... $+P

inside the Workspace
e Workflow references: Use the Databricks SDK, API, or CLI to list jobs with expanded
task details.
e External orchestrator references: Update references from data orchestrators such as
Airflow or Azure Data Factory.

https://github.com/databricks/databricks-sdk-py/blob/main/examples/jobs/list_jobs_api_full_integration.py

